UBC Home Page  
UBC Home Page
- UBC Home Page UBC Home Page -
News Events Directories Search UBC myUBC Login


Developmental Cognitive Neuroscience

 

The task we had called 'Dots' and now call 'Hearts & Flowers'-

Try your hand at the Hearts & Flowers task with the Hearts & Flowers demo

A list of some of the studies that have used the Hearts & Flowers task appears below.

For some more information about the Hearts & Flowers task, Click Here

Camerota, M., Willoughby, M. T., Magnus, B. E., & Blair, C. B. (2020). Leveraging item accuracy and reaction time to improve measurement of child executive function ability. Psychological Assessment, 32, 1118-1132.  doi:10.1037/pas0000953

Camerota, M., Willoughby, M. T., & Blair, C. B. (2019). Speed and accuracy on the hearts and flowers task interact to predict child outcomes. Psychological Assessment, 31(8), 995-1005. doi:10.1037/pas0000725

Diamond, A., Barnett, W.S., Thomas, J., & Munro, S. (2007). Preschool program improves cognitive control, Science, 318, 1387-1388.  doi:10.1126/science.1151148  (abstract)  (pdf)

Davidson, M.C., Amso, D., Anderson, L.C. , & Diamond, A. (2006). Development of cognitive control and executive functions from 4-13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44, 2037 – 2078.  doi:10.1016/j.neuropsychologia.2006.02.006  (abstract)  (pdf)

Wright, A. & Diamond, A. (2014). An effect of inhibitory load in children while keeping working memory load constant. Frontiers in Psychology, 5, 1-9. (Special issue on Development of Executive Function during Childhood).  doi:10.3389/fpsyg.2014.00213  (abstract)  (pdf)

Wu, T., Weiland, C., McCormick, M., Hsueh, J., Snow, C., & Sachs, J. (2024). One score to rule them all? Comparing the predictive and concurrent validity of 30 hearts and flowers scoring approaches. Assessment (Odessa, Fla.), 31, 1702. doi:10.1177/10731911241229566

 

and a further subset of the pubs available in the literature:

 

**

Abreu-Mendoza, R. A., Coulanges, L., Ali, K., Powell, A. B., & Rosenberg-Lee, M. (2020). Children’s discrete proportional reasoning is related to inhibitory control and enhanced by priming continuous representations. Journal of Experimental Child Psychology, 199, 104931.  doi:10.1016/j.jecp.2020.104931  (abstract)  (pdf)

Blair, C., & Raver, C. (2014). Closing the achievement gap through modification of neurocognitive and neuroendocrine function: Results from a cluster randomized controlled trial. Developmental Psychology, 50, 1970–1981.  (abstract)  (pdf)

Callaghan, T., Colasante, T., Muhammad, S., Corbit, J., Yavuz-Muren, M., Raffaele, C., Akter, R., Al Janaideh, R., Duan, T., Didkowsky, N., Beuze, J., Homer, B., Cameron, C. A., ... & Rochat, P. (2021). Developing social understanding: A collaborative, international study of moral, social, and cognitive development in early childhood. Monographs of the Society for Research in Child Development, 86(3), 7–137. doi:10.1111/mono.12477

Edgin, J. O., Mason, G. M., Allman, M. J., Capone, G. T., DeLeon, I., Maslen, C., & Nadel, L. (2010). Development and validation of the Arizona Cognitive Test Battery for Down syndrome. Journal of Neurodevelopmental Disorders, 2(3), 149–164.  (abstract)  (pdf)

Fernandes, V. R., Becker, D. R., McClelland, M. M., & Rohde, L. A. (2023). Motor and executive function proficiency in preschoolers is associated with later proficiency in reading but not math. Child Neuropsychology, 29, 847–861. doi:10.1080/09297049.2022.2138302

Gambarini, A., Dell’Acqua, R., & Roebers, C. M. (2023). Refining the understanding of executive functions: On the reliability and validity of a single latent construct in 5-year-old children. Frontiers in Psychology, 14, 1149053. doi:10.3389/fpsyg.2023.1149053

Ger, E., & Roebers, C. M. (2024). Monitoring and control processes within executive functions: Is post-error slowing related to pre-error speeding in children? Journal of Experimental Child Psychology, 246, 105975. doi:10.1016/j.jecp.2024.105975

Ger, E., & Roebers, C. M. (2024). Training kindergarten children on learning from their mistakes. British Journal of Developmental Psychology, 42, 478–494. doi:10.1111/bjdp.12508

Ger, E., & Roebers, C. (2023). Hearts, flowers, and fruits: A training study to improve executive functioning in preschoolers. Frontiers in Psychology, 8, 859. doi:10.3389/fpsyg.2017.00859

Ger, E., & Roebers, C. M. (2023). The relationship between executive functions and self-regulation with a new rating tool in 5- to 6-year-olds. Frontiers in Psychology, 10, 2024. doi:10.3389/fpsyg.2019.02024

Goldín, A. P., Vladisauskas, M., Paz, G. O., Nin, V., Guillén, J. A., Belloli, L., ... & Fernández-Slezak, D. (2024). The long and winding road to real-life experiments: Remote assessment of executive functions with computerized games—Results from 8 years of naturalistic interventions. Brain Sciences, 14, 262. doi:10.3390/brainsci14030262

Keye, S. A., Walk, A. M., Cannavale, C. N., Iwinski, S., McLoughlin, G. M., Steinberg, L. G., & Khan, N. A. (2021). Six-minute walking test performance relates to neurocognitive abilities in preschoolers. Journal of Clinical Medicine, 10, 584.  doi.org/10.3390/jcm10040584

Roebers, C. M., Mayer, B., & Herrmann, E. (2021). The role of executive functions for interactive theory of mind. Journal of Intelligence, 11(4), 64. doi:10.3390/jintelligence11040064

Rosas, R., Espinoza, V., Porflitt, F., & Ceric, F. (2019). Executive functions can be improved in preschoolers through systematic playing in educational settings: Evidence from a longitudinal study. Frontiers in Psychology, 10, 2024. doi:10.3389/fpsyg.2022.923615

Schonert-Reichl, K., Hanson-Peterson, J., & Hymel, S. (2015). Enhancing cognitive and social–emotional development through a simple-to-administer mindfulness-based school program for elementary school children: A randomized controlled trial. Developmental Psychology, 51(1), 52–66.  (abstract)  doi:10.1371/journal.pone.0112393  (pdf)

Spiegler, O., & Petrova, E. (2023). Investigating the longitudinal reciprocal relationships between working memory and executive functions in the transition to school. Frontiers in Psychology, 14, 923615. doi:10.3389/fpsyg.2022.923615

Stein, M., & Nazari, P. (2023). The interplay of executive functions and contextual information during word processing in kindergarten children. Frontiers in Psychology, 13, 1149053. doi:10.3389/fpsyg.2022.923615

Stroth, S., Hille, K., Spitzer, M., & Reinhardt, R. (2010). Impact of aerobic exercise training on cognitive functions of older adults. Neurobiology of Learning and Memory, 94(4), 597–605.  (abstract)  (pdf)  doi:10.1016/j.nlm.2010.08.003

von Suchodoletz, A., Fäsche, A., Gunzenhauser, C., & Hamker, S. (2013). Exploring the impact of feedback on preschoolers’ executive function performance. Child Development Research, 2013, 1–7. doi:10.1155/2013/683425

Zaitchik, D., Iqbal, Y., & Carey, S. (2014). The effect of executive function on biological reasoning in young children: An individual differences study. Child Development, 85, 160–175.  doi:10.1111/cdev.12145  (abstract)  (pdf)

**

Summary of H&F Scoring Methods as reported in
Table 1 of Wu et al. (2024).

H&F score(s) reported Study Construct label (only for H&F score used in main analysis)a Age group
Easier to replicate
Accuracy only
1. Hearts ten Braak et al. (2018)
Wright & Diamond (2014)
Sachs et al. (2017)
Kats Gold et al. (2021)
McCoy et al. (2021)
Lakes et al. (2013)

Working memory

Working memory
Basic processing
EF

Ages 6–10
Ages 8–9
Avg. 5.46 years
Avg. 9.9 years
Grades 7–8
2. Flowers ten Braak et al. (2018)
Suntheimer et al. (2022)
Ahmed et al. (2022)
Liu et al. (2022)
Stein et al. (2017)
Wright & Diamond (2014)
Barajas-Gonzalez et al. (2022)
Sulik et al. (2018)
Torrington Eaton & Ratner (2016)
Bardack & Obradovic (2019)
Sachs et al. (2017)



Inhibitory control
Inhibitory control
Inhibitory control
EF
Inhibitory control
Inhibitory control


Ages 6–7
Ages 5–11
Avg. 9.3 years
Grades 3–5
Ages 5–6
Ages 6–10
Avg. 4.4 years
Avg. 9.73 years
Avg. 5 years
Avg. 11.17 years
Ages 8–9
3. Mixed Kats Gold et al. (2021)
Sai et al. (2018)
McCoy et al. (2021)
Lakes et al. (2013)
EF
Cognitive flexibility
Inhibitory control
EF
Avg. 5.46 years
Ages 4–6
Avg. 9.9 years
Grades 7–8
4. Average (all blocks) Schonert-Reichl et al. (2015) EF Avg. 10.24 years
Reaction time (RT) only
5. Hearts Kats Gold et al. (2021)
Lakes et al. (2013)
Schonert-Reichl et al. (2015)
Working memory and inhibitory control
EF
EF
Avg. 5.46 years
Grades 7–8
Avg. 10.24 years
6. Flowers Ahmed et al. (2022)
Stein et al. (2017)
Wright & Diamond (2014)
Torrington Eaton & Ratner (2016)
Sachs et al. (2017)

Inhibitory control
Inhibitory control
Inhibitory control

Avg. 9.3 years
Ages 5–6
Ages 6–10
Avg. 5 years
Ages 8–9
7. Mixed von Suchodoletz et al. (2017)
Ahmed et al. (2022)
Stein et al. (2017)
Wright & Diamond (2014)
Torrington Eaton & Ratner (2016)
Sachs et al. (2017)
Kats Gold et al. (2021)
EF

Attention shifting
Cognitive flexibility
Cognitive flexibility
EF

Avg. 4.58 years
Avg. 9.3 years
Ages 5–6
Ages 6–10
Avg. 5 years
Ages 8–9
Avg. 5.46 years
8. Average (all blocks)
More difficult to replicate
EF composite
Using mixed accuracy Daneri & Blair (2017)
Neuenschwander & Blair (2017)
Ribner et al. (2017)
EF
Attention shifting
Inhibitory control and cognitive flexibility
Avg. 5.8 years
Avg. 7.19 years
Avg. 5.74 years
Using flowers accuracy ten Braak et al. (2018) EF (behavioral control) Ages 6–7
Using a mix of H&F tasks Suntheimer et al. (2022)
Ahmed et al. (2022)
Jaekel et al. (2019)
Sulik et al. (2018)
Bardack & Obradovic (2019)
Miconi et al. (2019)
EF
Inhibitory control and cognitive flexibility
EF
EF
EF
Inhibitory control and cognitive flexibility
Ages 5–11
Avg. 9.3 years
Ages 5–15
Avg. 9.73 years
Avg. 11.17 years
Avg. 12.13 years
Involving switch trials
Mixed accuracy Rutherford et al. (2018)
Ren et al. (2019)
Inhibitory control and cognitive flexibility
Inhibitory control
Grades 2–3, 5
Avg. 8.02 years
Mixed RT Begolli et al. (2018) Inhibitory control Avg. 11.17 years

   

* * *

Flanker/Reverse-Flanker task -

Try your hand at the Flanker/Reverse-Flanker task with the Flanker/Reverse-Flanker demo

A list of some of the studies that have used the Flanker/Reverse-Flanker task appears below.

For some of our lab’s findings with the Flanker/Reverse-Flanker task, Click Here

Silvestri, F., Campanella, M., Bertollo, M., Albuquerque, M. R., Bonavolontà, V., Perroni, F., Baldari, C., Guidetti, L., & Curzi, D. (2023). Acute effects of Fitlight™ training on cognitive-motor processes in young basketball players. International Journal of Environmental Research and Public Health, 20, 817.  doi:10.3390/ijerph20010817

Liu, J., Taneepanichskul, S., Zhang, B., & Xenos, P. (2023). The effect of a single bout of Chinese archery on core executive functions in preadolescent children in Shanghai. International Journal of Environmental Research and Public Health, 20, 1415.  doi:10.3390/ijerph20021415

Hooper, B., Faria, L. O., Fortes, L. d. S., Wanner, S. P., & Albuquerque, M. R. (2022). Development and reliability of a test for assessing executive functions during exercise. Applied Neuropsychology. Adult, 29, 750-760.  doi:10.1080/23279095.2020.1807984

Albuquerque, M. R., Rennó, G. V. C., Bruzi, A. T., Fortes, L. d. S., & Malloy-Diniz, L. F. (2022). Association between motor competence and executive functions in children. Applied Neuropsychology. Child, 11, 495-503.  doi:10.1080/21622965.2021.1897814

Siersbaek, G. M., Have, M., & Wedderkopp, N. (2022). The effect of leisure time sport on executive functions in Danish 1st grade children. Children (Basel), 9, 1458.  doi:10.3390/children9101458

Liu, J., Li, Y., Zhou, T., Lu, Y., Sang, M., Li, L., Fang, C., Hu, W., Sun, X., Quan, M., & Liu, J. (2022). Relationship between gross motor skills and inhibitory control in preschool children: A pilot study. Frontiers in Human Neuroscience, 16, 848230.  doi:10.3389/fnhum.2022.848230

von Suchodoletz, A., Slot, P. L., & Shroff, D. M. (2017). Measuring executive function in Indian mothers and their 4-year-old daughters: Executive function in Indian mothers and daughters. PsyCh Journal (Victoria, Australia), 6, 16-28.  doi.org/10.1002/pchj.156

Schonert-Reichl, K. A., Oberle, E., Diamond, A., Lawlor, M. S., Abbott, D., Thompson, K., & Oberlander, T.F. (2015). Enhancing cognitive and social – emotional development through a simple-to-administer mindfulness-based school program for elementary school children: A randomized controlled trial. Developmental Psychology, 51, 52-66. (Special Section on Mindfulness and Compassion in Human Development)  doi:10.1037/a0038454  (abstract)  (pdf)

Zaitchik, D., Iqbal, Y., & Carey, S. (2014). The effect of executive function on biological reasoning in young children: An individual differences study. Child Development, 85, 160-175.  doi:10.1111/cdev.12145  (abstract)  (pdf)

Diamond, A., Barnett, W.S., Thomas, J., & Munro, S. (2007). Preschool program improves cognitive control, Science, 318, 1387-1388.  doi:10.1126/science.1151148  (abstract)  (pdf)

Munro, S., Chau, C., Gazarian, K. & Diamond, A. (2006). Dramatically larger Flanker effects (6-fold elevation). Presentation, Cognitive Neuroscience Society Annual Meeting, San Francisco, CA.  doi:10.13140/RG.2.1.4289.8402  (abstract)  (pdf)