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Abstract: Restless sleep disorder affects children and is characterized by frequent nocturnal move-
ments, iron deficiency, and daytime symptoms such as poor school performance or behavioral
problems. Although sleep parameters have been thoroughly studied and daytime sleepiness has been
previously assessed, neurocognitive and executive functions have not. In this study, we evaluated
neurocognitive functions in a group of 13 children diagnosed with restless sleep disorder using the
National Institute of Health Toolbox (NIH toolbox). The mean age was 10.62 (S.D. 2.785). Among
them, seven were male and six were female. The fully corrected T-scores (adjusted for demographic
variables: age, ethnicity, and education level) showed the lowest values for the Flanker test (selective
attention) and dimensional change card sorting test (cognitive flexibility and inhibitory control),
with a very large effect size vs. the corresponding expected frequencies. For all the other tests, the
average scores were 50; however, individual children scored low on pattern recognition and two
composite scores (fluid and total). In conclusion, these data support the fact that cognitive functions
are affected in children with restless sleep disorder, especially selective attention. Clinicians must
recognize sleep disorders and daytime impairment in order to promptly intervene and prevent
cognitive impairments.

Keywords: restless sleep disorder; selective attention; pediatrics; executive functions

1. Introduction

Good sleep quality is important for healthy growth, development, and cognition [1].
Decades of research have demonstrated the importance adequate sleep time. In fact,
the American Academy of Sleep Medicine (AASM) has published an expert consensus
guideline recommending the hours that children should sleep on the basis of age (children
3–5 years: 10–13 h; 6–12 years: 9–12 h; teenagers 13–18 years: 8–10 h) [2]. Sleeping the right
amount of time helps children and adolescents avoid the consequences of sleep deprivation,
which include daytime sleepiness, hyperactivity, and attention problems, among others [3].

Sleep disorders can affect both quantity and quality of sleep; however, when compared
with sleep quantity, sleep quality has not been thoroughly studied. Depending on the
symptoms and presentation, sleep disorders are divided in six main categories: insomnia,
parasomnia, hypersomnia, circadian rhythm disorders, sleep disordered breathing, and
movement disorders [4]. In the last decade, sleep medicine has advanced in knowledge
of the consequences associated with sleep disorders in relationship with health, quality
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of life, behavior, cognition, and executive function, particularly in adults [5,6]. Unfortu-
nately, studies demonstrating the daytime consequences of sleep disorders, particularly
in cognition and executive function, in children are sparse [7,8]. Sleep-related movement
disorders include restless legs syndrome, periodic limb movement disorder, bruxism, rhyth-
mic movement disorder, and restless sleep disorder (RSD) [9]. In some of these disorders,
such as in RSD, the amount of sleep is not affected but the quality of sleep is compro-
mised, contributing to daytime symptoms such as sleepiness and fatigue [10]. RSD has
been identified in children aged 6–18 years [11] and is manifested mainly by frequent
movements during sleep. The diagnostic criteria of RSD include parental complaints of
restless sleep manifested by frequent large muscle movements during sleep; repositioning
or movements occurring throughout the night; and restless sleep associated with day-
time symptoms of sleepiness, hyperactivity, or behavioral or cognitive problems [11,12].
Polysomnography is required for the diagnosis since objective findings of frequent body
movements must be demonstrated; in fact, the diagnosis of RSD requires a sleep study
to rule out other sleep disorders and to demonstrate a large body movement index of at
least five movements per hour [11,13,14]. RSD is found in 7.7% of children referred to
sleep centers, a prevalence around that of insomnia (7.3%), and below the prevalence of
restless legs syndrome (10.3%) [14]. The pathophysiology of RSD has not been completely
elucidated, but some postulated theories include sleep instability, sympathetic activation,
and iron deficiency [12,15,16]. Treatment with oral or intravenous iron has been shown to
improve the symptoms of RSD [17].

Most neuropsychological evaluations of executive and cognitive functions have been
carried out in adults with sleep disorders [18]. It is clear that adults with obstructive sleep
apnea have impaired non-verbal reasoning [19], attention, visual and verbal memory [20],
and visuospatial constructional abilities [5,6]. The same results have not been as robust in
children with obstructive sleep apnea. Children’s scores decrease but remain within the
expected range for their ages [21]. This is particularly important because it is currently
not known how long obstructive sleep apnea has to be present to affect neurocognitive
pathways in developing children.

When evaluating daytime impairment, it is important to differentiate cognitive func-
tions from executive functions. Cognitive functions are those abilities that allow us to
carry out tasks and include memory, language, and attention, while executive functions
are necessary for the cognitive control of behavior, such as selecting adequate behaviors
for the appropriate time, as well as switching behaviors, if needed. There are three main
core executive functions: inhibitory control, working memory, and cognitive flexibility;
from these, higher-order executive functions are built: reasoning, planning, and problem
solving [22]. Inhibitory control is the ability to focus attention, actions, thoughts, and
emotions, resisting internal or external distractions and providing a considered response
rather than an impulsive one [23]. Working memory is the ability to hold information in
the mind and work with it, such as using previously learned information to solve novel
problems. Deficiencies in working memory can manifest as difficulty following instruc-
tions or a constant need for repetition [22]. Cognitive flexibility is the ability to adapt our
responses to the demands of new requirements, which allows us to change strategies or see
a situation from a different point of view [22].

Although cognitive and executive functions have been studied in children with other
sleep disorders such as obstructive sleep apnea [24–26], they have not been studied in
children with sleep-related movement disorders, such as children with RSD. In this pilot
study, we aimed to study the presence and relationship between deficits in cognitive and
executive functions in children with a diagnosis of RSD. The study had two specific aims:
(a) to evaluate cognitive and executive functions in children with RSD, and (b) to determine
if any cognitive or executive function is more affected in children with RSD than other
cognitive or executive functions.

Our main hypothesis is that children with RSD will present with deficits in both
cognitive and executive functions.
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2. Materials and Methods
2.1. Subjects

Thirteen subjects were consecutively recruited from the sleep center at Seattle Chil-
dren’s Hospital. Inclusion criteria were as follows: diagnosis of RSD with clinical and
polysomnographic evaluation, and no history of recent infection or inflammation (past
2 months) with C-reactive protein <1. All children were attending an age-appropriate
grade in school. Exclusion criteria were as follows: children younger than 6 or older than
18 years; children with syndromes, neurodevelopmental disorders, or inability to speak
or express themselves; comorbidity with other medical, sleep, or psychiatric disorders;
children who did not complete polysomnography; children who did not speak English;
children taking medication that affects sleep or alertness. A board-certified pediatric sleep
physician (LDR) evaluated all children with a complete intake history and physical exam,
including complete chart reviews for comorbidities and medications. Diagnosis of RSD
was based on published criteria [27].

2.2. Instruments

All parents filled out sleep diaries to ensure proper sleep time (no sleep deprivation)
prior to neurocognitive testing. All children underwent polysomnography to rule out
other sleep disorders and to diagnose RSD. Polysomnography was performed according
to the AASM criteria [28], and data were recorded using the Sandman Elite Natus system,
Middleton, WI 53562 USA. Parameters recorded included electroencephalogram (EEG:
two frontal, two central, and two occipital channels, referred to the contralateral mastoid),
electro-oculogram, electromyogram (EMG) of the submentalis muscle, EMG of the right
and left tibialis anterior muscles, respiratory signals, effort signals for the thorax and
abdomen, oximetry, capnography, a single-lead electrocardiogram, and video and audio
recording. Calibrations were performed per routine standard by technicians. Epochs were
scored by a certified sleep technologist and board-certified sleep physician according to
the AASM criteria. RSD movements during sleep were scored according to the published
criteria [29].

The NIH toolbox cognitive battery was used for this study [30]. This battery is
designed to be administered to patients aged from 3 to 85 years. The cognitive battery
evaluates executive functions, attention, memory, processing speed, and language with
age-appropriate measures in 5 age groups: 3–4, 5–7, 8–12, 13–17, and 18 and older. All
testing was conducted 2 h after awakening, on a Saturday.

The NIH toolbox cognitive battery includes the following tests. The Dimensional
Change card sorting test evaluates cognitive flexibility and inhibitory control in chil-
dren [31]; the Flanker test assesses selective attention [30]; the Picture Sequence memory
test evaluates episodic memory [32]; List Sorting assesses working memory [32]; Picture
Vocabulary measures the language skill of receptive vocabulary [32]; Pattern Recognition
measures processing speed [32]; and the Oral Reading test measures reading abilities.

Each test provides individual scores, performance scores, and composite scores. Nor-
mative data are provided in the NIH toolbox for performance and composite scores.

The fully corrected T-score (with a mean of 50 and standard deviation of 10) compares
the score of the test to the NIH toolbox normative sample, while adjusting for demographic
variables (age, ethnicity, and education level). The cognition battery produces 3 composite
scores, which are also given as T-scores: the fluid cognition composite score represents the
ability to solve problems, act quickly, and encode new memories; the crystallized cognition
composite score represents the accumulated experiences of verbal knowledge and skills;
finally, the cognitive function composite score is considered a reliable overall measure of
cognitive function.

2.3. Statistics

Descriptive statistics were performed using SPSS Statistics 28 (IBM). Mean and stan-
dard deviation were calculated for age. Frequencies were calculated for sex and ethnicity.
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Means, range, and standard deviation were calculated for the performance T-scores and
composite score. The comparison of the frequency of the observed normalized T-scores
≤50 and >50 vs. their expected frequencies was carried out by means of the chi-squared
test, and the corresponding effect size ϕwas computed (ϕ =

√
χ2/n); a value of 0.1 is con-

sidered a small effect, 0.3 a medium effect, and 0.5 a large effect. Finally, the nonparametric
Mann–Whitney test was used for independent data comparisons.

3. Results

Thirteen consecutive children were included in this case series. Their mean age was
10.62 (S.D. 2.785); seven were male and six were female. Nine were Caucasian, two were
Latino, and two were Asian. The T-scores for all the tests are found in Table 1. It should be
noted that the lowest score was the Flanker score with a mean score of 42, a minimum score
of 31, and a maximum score of 55. For all the other tests, the average scores were close to 50.
For T-scores, any score below 30 is less than 2 standard deviations from the mean. Figure 1
shows that some children scored below 30 on dimensional change, pattern recognition, and
two composite scores (fluid and total). Figure 1 also demonstrates visually that the majority
of children with RSD scored below the mean T-score of 50 for the Flanker test.
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Table 1. T-scores for all the tests in the NIH toolbox including composite scores.

Min Max Mean S.D.

Picture vocabulary 32 66 50.23 8.757
Flanker 31 55 42.08 7.331

List sorting 42 76 48.77 9.808
Dimensional change 26 74 47.92 13.131
Pattern recognition 22 74 51.85 14.781

Picture sequence 31 72 49.92 12.939
Oral reading 40 81 50.85 11.371

Composite fluid 19 76 46.46 14.858
Composite crystallized 36 74 50.31 9.517

Composite cognitive 29 69 48.23 12.788
Min = minimum; Max = maximum; S.D. = standard deviation.
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Table 2 shows the comparison of the frequency of the observed normalized T-scores
≤50 and >50 vs. their expected frequencies. The chi-squared test did not disclose any
significant difference (due to the small sample size) but only a tendency towards statistical
significance for Flanker and dimensional change (p = 0.067 for both). However, the corre-
sponding effect size ϕ was found to be very large for these two scores and, in addition, an
effect size of 0.474 was found for list sorting, indicating an almost large effect size (a value
of 0.5 is considered a large effect).

Table 2. Frequency of T-scores for all the tests in the NIH toolbox equal to or smaller than 50.

T-Score ≤ 50 T-Score > 50 Chi-Squared p = Effect Size ϕ

Picture vocabulary 7 6 0.07 0.791 0.019
Flanker 10 3 3.35 0.067 0.929

List sorting 9 4 1.71 0.191 0.474
Dimensional change 10 3 3.35 0.067 0.929
Pattern recognition 6 7 0.07 0.791 0.019

Picture sequence 7 6 0.07 0.791 0.019
Oral reading 8 5 0.61 0.435 0.169

Composite fluid 7 6 0.07 0.791 0.019
Composite crystallized 6 7 0.07 0.791 0.019

Composite cognitive 6 7 0.07 0.791 0.019

Finally, no statistically significant difference between T-scores obtained in males and
females was found, and all comparisons showed a small effect size.

4. Discussion

This study shows that children with RSD tend to score below the average in selective
attention, which is assessed by the Flanker test (Figure 1). These findings bring insight into
the daytime function and symptoms of children with RSD. Just like previous studies on
executive and cognitive function in children with sleep disorders, most of the findings in
the other tests were within normal levels, although in some cases below 1 or 1.5 standard
deviations [33]. Studies that have used uncorrected scores have found that, when the scores
were adjusted for age or socioeconomic status, differences were even smaller [33]; therefore,
we decided to use adjusted T-scores for our current study.

This is the first study that has assessed neurocognitive function in children with RSD,
highlighting the importance of the contribution of poor sleep quality to daytime symptoms
beyond daytime sleepiness, in this case, selective attention.

Our results show that there may be patterns of neurocognitive weakness that may be
specific to RSD, particularly in children with lower scores in attention. The NIH toolbox
has been used to assess neurocognitive function in children and adolescents with other
conditions and has also found pattern deficiencies that seem to be condition specific. For
instance, adolescents and young adults with autism spectrum have demonstrated that,
among the other tests, the lowest scores have been found in pattern comparison processing
speed [34], findings that have been corroborated in adults [35]. Slower processing speed
can contribute to some aspects of psychosocial functioning found in patients with autism.
It is worth mentioning that the lowest scores in these studies were between the mean
and 1 standard deviation below [35]. In contrast to these findings, adolescents with
Tourette’s syndrome did not show average results below the 50th percentile, with the
lowest scores in list sorting working memory [34], which have also been corroborated in
other studies [36]. These studies exemplify that the neurocognitive batteries can show
discrete patterns of subtle deficits in areas that can be disorder specific. They can also
help differentiate behaviors in children. For instance, with the suggestion that attention
is lower in children with RSD, we can understand that school performance and behavior
may not be secondary to impulsivity, distraction, memory, or maybe sleepiness. This
unique profile, if confirmed by larger, controlled studies, can aid in the identification of
daytime symptoms and diagnosis of RSD. Identifying these subtle weaknesses can also
provide therapeutic guidance in the future. In a study by Chervin et al. [37], children with
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mild-to-moderate sleep disordered breathing had deficits in attention that improved a year
after adenotonsillectomy. Studies have shown that children with RSD subjectively improve
in sleep and daytime symptoms after treatment with iron supplementation [17]. In this
sense, symptoms suspicious of attention deficit in children with RSD should be explored
with polysomnography to assess if RSD criteria are fulfilled, and prompt treatment with
iron supplementation should be instituted. If symptoms persist, assessment for comorbid
conditions that affect attention (ADHD) should be pursued.

The neurobiology of selective attention has been a focus of research in particular for
children with attention deficit/hyperactivity disorder (ADHD) [38]. Neuroimaging studies
have pointed to neural networks associated with selective attention found in the pre-striate
areas, concerned with basic visual processing [39]. Positron emission tomography studies
(PET) have also shown enhancement within different visual associative regions of the
brain, with attention to different attributes, demonstrating the interaction of other brain
areas for different stimuli, such as intraparietal sulcus for speed; collateral sulcus and
dorsolateral occipital cortex for color; collateral sulcus, fusiform and parahippocampal gyri,
and superior temporal sulcus for shape [40]. During childhood, these neuronal networks
are active and developing. It is of utmost importance to identify contributors to disruption
in these networks during the early years of childhood to provide prompt intervention.
In fact, studies on sleep deprivation have corroborated the impact on neuronal networks
associated with attention and alertness [41].

Vigilance and wakefulness are two basic processes over which executive and cognitive
functions develop. The degree of alertness varies during the day, affected mainly by circa-
dian influences [42]. However, alertness can also be influenced by the amount and quality
of sleep [43]. Studies have evaluated the impact of sleep deprivation on sustained attention
and executive functions [44]. Sleep deprivation impairs vigilant attention and processing
speed [45] and has also been shown to impair sustained attention, both in children with
ADHD and with normal controls [46]. Previous studies have shown that children with RSD
do not present with symptoms of insomnia or significant sleep deprivation. In fact they do
not have difficulty falling asleep or extended nocturnal awakenings [12]. Sleep disruption
in RSD, however, is likely to be secondary to microstructural interruptions during sleep
with higher sleep instability [15], possibly associated with the frequent movements and
repositioning through the night. In this respect, it is important to emphasize that sleep
microstructure has been reported to be correlated with cognitive processing and next-day
cognitive performance [47–49]; thus, it might also have a role in cognitive changes in RSD.
The microstructural sleep impairment in children with RSD is further supported by an
increased sympathetic activation during sleep, which was found during N3 and REM sleep
in particular through analyzing heart rate variability [16].

Regarding other sleep-related movement disorders, a study in patients with restless
leg syndrome has shown deficiencies in verbal fluency, short attention span, and inhibitory
control [50]. These findings were further confirmed in patients with restless leg syndrome
and poor sleep quality [51]. Other studies using the Stroop and trail-making tests did
not identify differences between patients with restless leg syndrome and controls [52],
pointing out the possibility that other influencing factors, such as disease duration, severity
of symptoms, or degree of sleep disruption, might contribute to the daytime impairment.

Although there is a scarcity of publications evaluating cognitive functions and exec-
utive functions in children with sleep-related movement disorders, we hypothesize that
sleep disruption contributes to daytime cognitive effects. Another important point in our
study is the fact that some children with RSD presented with low scores in tests that assess
processing speed, inhibitory control, and cognitive flexibility. These executive functions
are crucial for early success in school, helping with organizational skills, reasoning, and
cognitive development [53].

Limitations of this study include the small number of patients and the absence of
a normal control group due to COVID-19 restrictions in our clinic; moreover, patients
were recruited by a single center and only one, although complete, strongly validated
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and reliable neuropsychological assessment tool was used. These limitations preclude the
generalization of the results reported above; however, the exploratory and observational
nature of this study establishes a starting dataset for more detailed and conclusive future
research. Indeed, larger, more diverse populations need to be studied to corroborate the
findings presented here.

5. Conclusions

This exploratory study suggests that more detailed studies are needed to assess sleep
disorders, including RSD, in children with restless sleep and daytime symptoms. It is the
authors’ opinion that children should be periodically assessed for executive and cognitive
function to optimize areas that can contribute to overall health and normal development.
Furthermore, children suspected of having disturbances in attention should be evaluated
for sleep disorders.

A future direction for research includes assessment of neurocognitive function before
and after iron treatment, larger samples of children with RSD, and longitudinal research on
the developmental trajectory of neuropsychological deficits among children and adolescents
with RSD as they grow into adulthood.
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