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Abstract
Developmental neuroimaging studies report the emergence of increasingly diverse cognitive functions as closely entangled
with a rise-fall modulation of cortical thickness (CTh), structural cortical and white-matter connectivity, and a time-course
for the experience-dependent selective elimination of the overproduced synapses. We examine which of two visual
processing networks, the dorsal (DVN; prefrontal, parietal nodes) or ventral (VVN; frontal-temporal, fusiform nodes) matures
first, thus leading the neuro-cognitive developmental trajectory. Three age-dependent measures are reported: (i) the CTh at
network nodes; (ii) the matrix of intra-network structural connectivity (edges); and (iii) the proficiency in network-related
neuropsychological tests. Typically developing children (age ~6 years), adolescents (~11 years), and adults (~21 years) were
tested using multiple-acquisition structural T1-weighted magnetic resonance imaging (MRI) and neuropsychology. MRI
images reconstructed into a gray/white/pial matter boundary model were used for CTh evaluation. No significant group
differences in CTh and in the matrix of edges were found for DVN (except for the left prefrontal), but a significantly thicker
cortex in children for VVN with reduced prefrontal ventral-fusiform connectivity and with an abundance of connections in
adolescents. The higher performance in children on tests related to DVN corroborates the age-dependent MRI structural
connectivity findings. The current findings are consistent with an earlier maturational course of DVN.

Key words: brain maturation, cortical thickness, dorsal and ventral visual networks, network connectivity, neuropsychologi-
cal proficiency

Introduction
Our brains display a similar overall anatomical architecture, yet
our cognitive behavior is distinctly diverse. The major process
underlying such diversity, apart from genetic determination, is
the experience-dependent neuronal connectivity emerging
from selective elimination of the initially over-generated

synapses (Changeux and Danchin 1976; Huttenlocher 1979;
Rakic et al. 1986). An important insight into the puzzle of diver-
sity may, thus, come from examining the developmental
dynamics of cortical thinning and structural cortical connectiv-
ity associated with two long-range visual processing networks,
Dorsal and Ventral (DVN and VVN; Maunsell and Van Essen
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1983; Mishkin et al. 1983; Haxby et al. 1991; Goodale and Milner
1992; Corbetta and Shulman 2002; Fox et al. 2006). DVN and
VVN constitute a model of major significance for understand-
ing the neuronal diversity in typical cognitive development and
etiology of neurodevelopmental disorders (Atkinson 2000;
Atkinson and Braddick 2003; Iliescu and Dannemiller 2008;
Johnson et al. 2008; Klaver et al. 2011), yet, the essential ques-
tion as to which network may develop earlier and, thus, lead
the developmental neuro-behavioral trajectory, remains
unsolved.

The current study relies on a compelling body of knowledge
suggesting that a consistent organizational principle drives mat-
uration of the human brain cortex. Accordingly, two regions of
the cortex that are functionally related may also display strong
structural covariance (Seeley et al. 2009; Zielinski et al. 2010;
Zhou et al. 2012; Alexander-Bloch et al. 2013), such as in cortical
thickness (CTh) or in volume of white-matter pathways. For
example, studies of brain integration using diffusion tensor or
spectra imaging (DTI, DSI) of white-matter pathways and func-
tional resting state (RS)-fMRI demonstrate high correlational
convergence (Bullmore and Sporns 2009; Hagmann et al. 2010).
In agreement, in the present study we define a complex “net-
work”, as a set of “cortical nodes” with well-determined func-
tional anatomy, correlated time-courses (“network edges”) in
task-induced activation or in the rate of developmental
anatomical transformations (Bullmore and Sporns 2009).
Complex networks form gradually through a process of modu-
larity or clustering of nodes into high-density intra-network con-
nections, but decreasing non-directional correspondence with
inter-network modules (Girvan and Newman 2002; Bullmore and
Sporns 2009). Here, we acquired data on cortical structural connec-
tivity displayed by correlations of age-dependent thinning in CTh
between intra-network nodes. As noted above, cortical nodes that
are connected will demonstrate a significant pair-wise correlative
“relationship” (a significant network edge) of progressive changes
in CTh. Since changes reported as prominent during developmen-
tally sensitive time windows of early childhood and adolescence
parallel progress in cognitive proficiency (Sporns et al. 2004; Casey
et al. 2005; Bassett and Bullmore 2006; Bressler et al. 2008; Shaw
et al. 2008; Blakemore et al. 2010; Raznahan et al. 2011; Walhovd
et al. 2016), we expected that in children cognitive skills specific to
the earlier-maturing network will be closer to adult performance.

The development of CTh in humans is marked by non-
linearity with a density of the cortex displaying a rise-fall pat-
tern specific to a brain region and age of a child, with elevated
CTh in early childhood and its gradual decrease into later ado-
lescence (Giedd et al. 1999; Sowell et al. 2004; Gogtay et al.
2008). The pattern of maturational thinning follows a develop-
mental sequence, with the primary somato-sensory and visual
sensory regions maturing first, and with the higher-order asso-
ciation prefrontal cortices showing a protracted course (Sowell
et al. 2001; Gogtay et al. 2004; O’Donnell et al. 2005; Shaw et al.
2008). In this approach, an investigation of connectivity
between functional nodes of a particular network require a-
priori knowledge about their functional and anatomical signifi-
cance (Bressler and Tognoli 2006).

The functional anatomy of cortical nodes in DVN and VVN
is well researched. Earlier lesion studies in monkeys led to the
definition of two anatomically and functionally separate corti-
cal streams both emerging in the primary visual cortex
(Mishkin et al. 1983). Earlier reports related DVN to the
posterior-inferior parietal and the dorsal superior frontal (SF)/
premotor cortex, and VVN to “the occipitotemporal cortex, the
fusiform area and the ventrolateral/medial prefrontal cortex”.

Multiple clinical and functional imaging studies associated
nodes of DVN to visual-spatial localization, visually guided “tool”
manipulation, visual working memory and attentional eye move-
ment control (Jones and Powell 1970; Mesulam et al. 1977;
Bachevalier and Mishkin 1986; Desimone and Ungerleider 1989;
Van Essen et al. 1992; Friedman and Goldman-Rakic 1994; Courtney
et al. 1998; Culham and Kanwisher 2001; Rizzolatti and Matelli
2003; Chen et al. 2008, 2017; Milner and Goodale 2008). A discrete
stream of fibers, providing a specific cortical–cortical connectivity
between the posterior and anterior nodes of the DVN includes the
occipital-frontal fasciculus and superior longitudinal fasciculus II
(Pandya and Seltzer 1982; Yeterian and Pandya 1993). In contrast,
the cortical nodes of VVN have been associated with identification
of objects via fine detail and color feature extraction, and with cate-
gorical semantic object labeling (Kuypers et al. 1965; Jones and
Powell 1970; Van Essen and Maunsell 1983; Van Essen et al. 1992;
Milner and Goodale 1995; Gerlach et al. 2000; Martin et al. 2000;
Smith and Jonides 2000; Chen et al. 2008). The major white-matter
fibers connecting VVN nodes include the inferior longitudinal fas-
ciculus and external capsule (Chavis and Pandya 1976; Yeterian
and Pandya 1995).

Diffusion tensor imaging (DTI) tractography studies, mea-
suring the thickness, density and directionality of white-matter
pathways connecting cortical hubs (Tuch et al. 2003; Gong et al.
2009; Loenneker et al. 2011) in combination with RS-fMRI
showed that in long-range networks the more dense and thick-
er the connecting white-matter pathway, the stronger the
structural and functional connectivity between the cortical
nodes (Paus et al. 2001; Salat et al. 2009; Hagmann et al. 2010).
Several DTI studies suggested that white-matter trajectories
relevant to DVN may attain volumetric maturity later than
VVN (Klingberg 2006; Mabbott et al. 2006). Studies of perception
of faces in newborns were originally interpreted as supporting
the early readiness of VVN, but are now in dispute (Johnson
and deeHaan 2015). In contrast, regional MRI cortical mor-
phometry studies have found that DVN cortical nodes mature
earlier than ventral prefrontal and temporal regions (Sowell
et al. 1999, 2001; Grill-Spector et al. 2008; Shaw et al. 2006,
2008). Further multidisciplinary insight about the rules govern-
ing maturation of both networks, their connectivity and gover-
nance of performance is important.

A primary basis for structural cortical–cortical brain connec-
tivity emerges around the 8th week of gestation when dynamic
proliferation and migration of neural cells is followed by
emerging axonal processes, myelination, cell dendritic arbori-
zation and, consequently, by formation of the first neural cir-
cuits within sensory and motor roots (Yakovlev and Lecours
1967). The current general view is that major structural path-
ways and cortical hubs are predetermined (Rakic 2009). They
emerge in early childhood, around age 2, similar to adults, but
continue to strengthen till adulthood (Supekar et al. 2009). The
nodes and efficiency of networks increases across “develop-
ment” through refinement of a regional increase in thickness of
myelination and diameter of axons (Löbel et al. 2009), with
structural white-matter and functional connectivity develop-
ment significantly correlated across ages (Hagmann et al. 2008).
At the age of 5–6, the head circumference stabilizes and per-
mits a reliable acquisition of MRI signals across all age groups
(Caviness et al. 1996; Giedd et al. 1999; Sowell et al. 2004).
Moreover, till about age 8 children increase in volume of CTh
and from that time point the regional thinning of the cortex
and increasing strength of between-nodes connectivity
becomes a normative developmental trend (Giedd et al. 1999;
Sowell et al. 2004; Shaw et al. 2008). The maturation of the brain

2 | Cerebral Cortex

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhz053/5423756 by U

niversity of British C
olum

bia Library user on 10 M
ay 2019



continues into later adolescence/adulthood with a trend of
mostly regional cortical thinning (Sowell et al. 2004). Structural
maturation studies showed a positive correlative interrelation-
ship between structural cortical transformations and rising
functional connectivity (Hyde et al. 2009; Seeley et al. 2009;
Hagmann et al. 2010). Little corroboration, however, has been
provided by neuropsychological data about the developmental
brain–behavior relationship. We examined the age-dependent
changes in CTh and structural connectivity within DVN and
VVN in typically developing children (C), age ~6, in early adoles-
cents (D) age ~11, and in adults (A) age ~21. Based on prior
developmental, molecular, and neuroimaging data depicting
formation of cortical–cortical circuits, we expected large group-
age differences between youngest group of children and
adolescents.

Maturational changes in gray matter density, volume and in
CTh have been reported to differ between males and females.
Greater volumes of gray matter in the frontal brain of adoles-
cent males as compared with females were demonstrated in
earlier studies (Reiss et al. 1996; Giedd et al. 1999). These are
accompanied by more recent findings of delayed thinning of
CTh and delayed neuronal coupling in frontal-polar cortical
regions of boys as compared with girls, age 9–22 (Raznahan
et al. 2010, 2011). The latter study relates CTh morphometry
findings to sex differences in cognitive and behavioral profiles
of adolescent children, offering a very attractive translational
model. A recent (large n) study (Gennatas et al. 2017), however,
shows a modest effect of sex on CTh, distributed across the cor-
tical mantle with some higher CT in males over the area of the
insula, frontal and occipital areas till adolescence (15 years).
Then the pattern reverses, with females having a somewhat
thicker cortex. These findings emphasize also that the reported
lower gray matter volume in females coexist with increasing
gray matter density, thus CTh morphometry measurements
may benefit from histological validation. In another study on
mean CTh in the frontal-polar brain of subjects age 8–20, sex
did not show any significant differences (O’Donnell et al. 2005).
The authors consider that these findings are limited because of
a relatively small (18 males vs. 17 females) group sample.
Consistently, a stereologic cortical morphometry study in
males and females (age 12–24) found no sex differences in CTh
(Rabinowicz et al. 2009). Thus, current findings on age-related
sex differences in cortical anatomy are variable. The consis-
tency may significantly depend on the number of available MRI
scans and on the employed methodology of measurements. If
we were to examine age-dependent sex differences, we would
need a larger sample size. However, considering all of the
above, in order to control the influence of sex, if any, we bal-
ance the distribution of males and females across our age
groups.

The principal aim of this study is to examine which of two
fundamental brain networks, DVN and VVN, displays a more
advanced maturational state in early ontogeny, and thus
assumes a governance in the development of cognitive profi-
ciency. Towards this goal, three sets of age-dependent mea-
surements are undertaken: (i) changes of CTh transformations
using MRI signals in the specific DVN and VVN cortical nodes;
(ii) changes in organization of the matrix of “intra-network”
and “inter-network” connectivity based on the coherence of
age-dependent CTh reduction; and (iii) proficiency of perfor-
mance on neuropsychological tests associated with DVN and
VVN in children as compared with adults. Our predictions that
maturational thinning of the cortex is attained earlier in nodes
of DVN rather than VVN is based on prior CTh morphometry

reports (e.g., Gogtay et al. 2004; Sowell et al. 2004), on the high
evolutionary significance of cognitive functions related to DVN
and on our earlier fMRI and magnetoencephalography (MEG)
studies with children (Ciesielski et al. 2006, 2010). We expect
that the structural connectivity matrix in children inferred
from correlations between cortical thinning in network nodes
would show a stronger topology and edges for DVN, and would
more closely resemble an adult pattern. This prediction is in
line with converging evidence of protracted maturation in the
prefrontal and temporal regions of VVN that govern verbal cat-
egorical labeling and facial cognitive interpretation based on
detailed extraction of texture and color (review, Grill-Spector
et al. 2008). Accordingly, we expect that performance in chil-
dren on neuropsychological tests associated with DVN will
mature earlier than on tests associated with VVN, and may
show more similarity to adult performance. Thus, we predict
that the pattern of CTh in DVN nodes will be similar in children
and adults, the structural connectivity in children will be stron-
ger in DVN than in VVN and children’s performance proficiency
will be closer to adults on visual-spatial-construction tests
representing DVN. These predictions may all corroborate an
earlier developmental course of DVN.

Materials and Methods
Participants

Thirty-six healthy volunteers participated in this study: 12 chil-
dren (C: mean age 6.3 years, standard deviation (SD): 4 months),
12 early adolescents (D: 10.9 years; SD: 7 months), and 12 adults
(A: 21 year 6 month, SD: 18 month). The recruitment process
was rigorous: gender was distributed equally within and among
the groups; prenatal, perinatal, and early postnatal complica-
tions were screened out; central nervous system medications
and recreational substances were exclusionary. Pre-test screen-
ing interviews included milestones of development, adaptive,
social-academic functioning, and personal and family history
of neurological and psychiatric disorders. Consequently, two
children and one adult were discontinued from participation in
testing and from MRI scanning. All remaining participants were
evaluated using a battery of neuropsychological tests to deter-
mine their typical cognitive status. Neuropsychological perfor-
mance was found within an average to high-average range, as
compared with age norms, qualifying subjects from all three
groups for participation in the MRI component of the study.
Each subject participated in a relaxation session prior to MRI
scanning to reduce motor movement and increase comfort.
The study’s protocol was approved by the Institutional Review
Board for Human Research, Massachusetts General Hospital.
Signed informed consent and assent forms were obtained
accordingly from each adult and child participant, and parent/
legal caretaker.

Neuropsychological Data Acquisition and Analysis

The design of the current study included a standard
neuropsychological battery of tests (Lezak et al. 2012). The fore-
most goal was to secure sample uniformity as a representation
of typically developing, normative subjects. To attain this goal,
the assessment raw data were related to standard age and gen-
der corrected-norms (Strauss et al. 2006). The criterion was:
subjects who performed −1.3 SDs below the age-corrected
norm on three or more related measures would be excluded
from the study as displaying an atypical cognitive profile. The
second goal was to select, prior to FreeSurfer analysis, several
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tasks targeting functions associated with DVN or VVN and to
compare between groups the profiles of performance
proficiency.

The rationale for selecting effective measures of functions
targeted by neuropsychological tasks to maximally dichotomize
functional anatomy of dorsal and ventral pathways was guided
by findings of functional deficits in lesion studies on primates
and humans, and by current neuroimaging findings. Brain
lesion studies in humans were seminal for clinical neuropsy-
chology (Teuber & Mishkin 1954; Luria 1961; Milner 1963)
revealing an association between a location of a brain lesion
and deficits in task performance. Current progress in neuroim-
aging demonstrates, however, that a complex visual task
involves multiple levels of functional complexity and is associ-
ated with a network of synchronously connected cortical nodes
rather then a single cortical region (e.g., Ardila et al. 2015). This
rationale led us to utilize the relationship between certain
main functional components of tests and visual processing
networks.

The chief function of tasks linked with DVN, such as CFT-
Copy, CFT-Immediate Recall (CFT-IR; Rey 1941; Osterrieth 1944),
and Block Design (BD; a subtest of Wechsler Scales; Wechsler,
1997) include complex visual perception, organization and
planning, top-down inhibitory control of visual interference,
non-verbal working memory and perceptual-motor coordina-
tion. These functions are associated with network connectivity
between the parietal/occipital, prefrontal dorsal, and premotor
cortical nodes (Fuster 1989; Milner and Goodale 1995; Somerville
et al. 2010).

In contrast, the neuropsychological tasks linked to VVN
such as Stroop Word-Color Interference Test (STROOP-WC;
Stroop 1935; Alvarez and Emory 2006), FAS-Controlled Oral
Word Fluency Test (FAS-VF, Benton et al. 1994), and Wisconsin
Card Sorting Test with perseverative errors measurements
(WCST-PE; Berg 1948; Grant and Berg 1948; Heaton and Heaton
1981) all require cognitive proficiency in identification of an
object’s detailed properties (color, shape), integrating these
properties into a verbally-driven rule of working-memory and
using it with flexible alternation for controlling stimulus-
response. The critical functional components of tests linked to
VVN are the ability for self-control of motivation and verbally-
driven rules of performance and to control of impulsive persev-
erative responses. All these functions are engaging connectivity
between the prefrontal ventral (PFV)/orbital cortex and the infe-
rior regions (with broad contributions from the limbic system).
Thus, the control of impulsive perseverative errors in WCST-PE
will engage the frontal orbital (FO)/ventral and inferior
temporal-occipital cortical network. The perseverative errors,
frequent in prefrontal lesions, are reported to be highly preva-
lent in lesions of the ventral/orbitofrontal system, while other
cognitive and intellectual functions, including categorical
thinking may remain preserved (Freedman and Oscar-Berman
1986).

The orbitofrontal section of the ventral prefrontal cortex has
been closely associated with deficits in a delayed alternation
behavior (Goldman-Rakic 1987; Fuster 1989), where persevera-
tive responses are of the essence, and task functional demands
resemble WCST and Stroop Task. These tasks require following
a stimulus-response rule where the subject must inhibit, on
each trial, the previously rewarded response and make a new
decision. The ventral prefrontal region including the orbitofron-
tal cortex extending towards the frontal-polar and ventral part
of the dorsolateral subdivision were reported as playing an
important role in a healthy subject’s performance on delayed

alternation tasks (Mishkin and Pribram 1956; Warren and Akert
1964; Numan 1978; Rosenkilde 1979; Stuss and Benson 1986).
Following the above rationale, we present tasks representing
functions associated with DVN and VVN in Table 1.

To attain our second goal of neuropsychological testing, the
assessment of the level of proficiency across age groups in
functions associated with DVN and with VVN, Kruskal–Wallis
tests were performed on raw scores from the neuropsychologi-
cal tests representing DVN and VVN. Multiple comparisons,
using a Bonferroni correction with a family-wise error rate of
alpha = 0.05, were used to compare each pair of subjects from
three age groups (Table 1).

MRI Data Acquisition

High-resolution structural MR scans were performed at the
MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical
Imaging, Massachusetts General Hospital. Siemens Sonata, 1.5
Tesla Siemens AG, Erlangen, Germany. Imaging for the mor-
phometric analysis was done with a 3D inversion recovery with
a fast-low flip angle gradient echo sequence (MP-RAGE scans),
providing 128 sagittal slices, 1.33mm slice-thickness, with TR
between inversion pulses 2730ms; TR/TE/flip angle/TI: 2730ms/
3.44ms/7 degrees/1000ms; acquisition matrix of 256·192·128;
square FOV of 256mm; NEX 1; and two MP-RAGEs, each 8min
46 s. These acquisition parameters were empirically optimized
to increase gray/white and gray/cerebrospinal fluid contrast.
Obtaining a single image with high contrast-to-noise, required
for each participant two separate MP-RAGE acquisitions (8min
46 s each).

MRI Data Analysis

Cortical reconstruction and volumetric segmentation was per-
formed with the FreeSurfer image analysis program (http://
surfer.nmr.mgh.harvard.edu/; Dale et al. 1999; Fischl, Sereno,
Dale 1999; Fischl et al. 2002, 2004, Reuter et al. 2012). In sum-
mary, the 3D structural scans were used to construct models of
each individual cortical surface. Cross-subject statistics were
generated in a cortical surface-based coordinate system (Dale
and Sereno, 1993; Fischl et al. 1999a).

In consecutive stages Freesurfer processing included: (i)
motion correction and averaging (Reuter et al. 2012) of two
high-resolution volumetric T1-weighted images; (ii) removal of
non-brain tissue using a hybrid watershed/surface deformation
procedure; (iii) automated Talairach transformation; (iv) intensity
normalization; (v) tessellation of the gray matter/white-matter
boundary, automated topology correction; and (vi) surface defor-
mation following intensity gradients to optimally localize the
gray/white and gray/pial matter, the segmentation of the sub-
cortical white matter and deep gray matter volumetric structures
(Dale et al. 1999; Fischl, Sereno, Dale 1999). When the cortical
models were completed, deformable procedures were performed
for further data processing and analysis including surface infla-
tion (Fischl, Sereno, Dale 1999), registration to a spherical atlas
which is based on individual cortical folding patterns to match
cortical geometry across subjects (Fischl et al. 1999a), parcellation
of the cerebral cortex into units with respect to gyral and sulcal
structure (Desikan et al. 2006), and creation of maps of curvature
and sulcal depth. Both intensity and continuity information from
the entire 3D-MR volume was used in segmentation and defor-
mation procedures to produce representations of CTh.

CTh was calculated as the closest distance from the gray/
white boundary to the gray/CSF boundary. The distance
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between those surfaces was measured at each point across the
cortical mantle. We compare mean CTh for selected nodes rep-
resentative of DVN and VVN. We use the mean thickness over
preselected regions of interest (ROI), similarly to Dickerson
et al. (2008) to estimate the CTh in mm2 in the following ROIs
for DVN: inferior posterior parietal cortex, left and right (IPP-L,
IPP-R), SF dorsal cortex left and right (SF-L, SF-R), precuneus/
posterior medial cortex left and right (PCN-L, PCN-R) and for
VVN: fusiform gyrus/inferior temporal-occipital cortex left and
right (FG-L, FG-R), ventral prefrontal cortex left and right (VPF-
L, VPF-R), frontal orbital cortex extending to medial left and
right (FO-L and FO-R). Using the spherical morph from each
subject that transforms that subject’s cortical surface model to
the average cortical surface template, these ROIs were mapped
from the template of each individual subject and the mean cor-
tical CTh within each ROI in each subject was measured. This
generated, for the MRI data set for each subject, a mean ROI
CTh measure. The ROI analysis avoids the problem of having to
correct for large numbers of statistical tests, the so-called mul-
tiple comparison problem. The Freesurfer procedures for the
measurement of CTh have been validated using manual mea-
surements (Kuperberg et al. 2003; Salat et al. 2004). Freesurfer
morphometric procedures have been demonstrated to show
good test–retest reliability across scanners and field strengths
(Han et al. 2006; Reuter et al. 2012).

Before the FreeSurfer measurements were submitted to
analysis two sets of evidence were examined, developmental
and empirical validation, providing reassurance that the mea-
surements of CTh are reliable and valid in our population of
children age 6 and 11 (middle childhood). The developmental
evidence provided confidence that the age-related gray/white
tissue contrast will not negatively influence tissue segmenta-
tion in our youngest 6 year-old youngsters since age-related
contrasts in gray/white matter after the age of three are no lon-
ger noticeable (Barkovich 2000). In addition, the dimensions of
the brain, cortical architecture of sulci, gyri, and gray/white-
matter contrast are reaching values comparable to adults
around the age of 4–5 (Reiss et al. 1996; Barkovich 2000, 2005;
Nolte 2008; Bray et al. 2015). Although the gray matter thickness
was reported to be highest at the age of 4 (Pfefferbaum et al.
1994), after the age of 5 no significant age-changes in total cere-
bral volume were noted (Reiss et al. 1996). This is in sharp con-
trast to data reported from infants (age 0–2) where the MRI
challenges are significant for brain morphometry including low
gray/white-matter contrast to noise ratios, significantly smaller
size of the cerebrum and high motion artifacts (Barkovich 2005;
Prastawa et al. 2005; Shi et al. 2010).

The empirical validation of FreeSurfer is in line with the above
developmental data. The validation study using FreeSurfer on a
large sample of children age 4–11 demonstrated good validity of
segmentation of gray matter and sub-cortical white matter in
children around 5 years of age (Ghosh et al. 2010) (Important,
Freesurfer includes motion correction of T1-weighted images and
removal of non-brain tissue using a hybrid watershed/surface
deformation procedure that improves the brain anatomical read-
ability; Ségonne et al. 2004). Investigation of age bias in Talairach
and spherical registration of brain coordinates between ages 4
and 11 found no bias of age down to 4 years 9 months (Ghosh
et al. 2010). Since the youngest children were 6 years old, and
thus far above the critical age of 5, the results of Talairach and
other spherical registration techniques is expected to demon-
strate comparable accuracy in spherical registration between

adults and children. An automatic Talairach transformation was
previously validated in pediatric and adult populations (Burgund
et al. 2002) with a consistent outcome.

Analysis of Age-Group Differences between CTh in
Nodes of DVN and VVN

The prime question was whether the thinning of the CTh in
DVN and VVN showed a pattern determined by age. To com-
pare CTh estimates across subjects in each age group, the corti-
cal surface models were aligned using a high-resolution
surface-based averaging technique that aligns cortical folding
patterns. Each reconstructed brain was morphed to an average
spherical surface representation that optimally aligned sulcal
and gyral features across subjects, while minimizing metric
distortion (Fischl et al. 1999a). To remove noise-induced varia-
tions in measurements, a surface-based Gaussian blurring ker-
nel with a SD of 7mm was applied. Mean CTh and variance of
the mean were calculated at each location and mapped to the
common space. Statistical CTh maps from selected brain
regions were averaged across all A using high-resolution sur-
face-based averaging techniques and compared with the CTh
from C and D (Fischl et al. 2004). Statistically significant thick-
ness difference maps were generated using t-tests for between
samples, that is, at each vertex using a random effect model
across both cortical hemispheres.

Figure 1 displays well-defined functionally and anatomically
DVN and VVN cortical regions that were submitted to measure-
ment. The morphometric cortical maps by Desikan et al. (2006)
were used as a prototype for identifying the regions. For DVN,
means of CTh and variance were calculated for the bilateral infe-
rior parietal region (IPP-L, IPP-R), bilateral premotor cortex
including “dorsal superior frontal” region (SF-L, SF-R) and “bilat-
eral precuneus in medial plane” (PCN-L, PCN-R). For VVN repre-
sentative nodes included: the “fusiform gyrus” (FG-L, FG-R)
within the bilateral Inferior temporal/occipital region, the “pre-
frontal ventral cortex” (PFV-L, PFV-R), and the “bilateral frontal
orbital cortex” (FO-L, FO-R). Tukey–Kramer comparison was
used for post hoc calculations (after one-way ANOVA with alpha
set at 0.05) to examine between-group differences in CTh (Group
data in Supplementary Materials: Table S1C).

Analysis of Age-group Differences in Within-Network
Connectivity

Is the matrix of connectivity between nodes of the network, as
defined by coherent age-dependent changes in CTh, different
in DVN and VVN? Two nodes within-network were considered
to express structural connectivity when they displayed statisti-
cally significant correlations of CTh transformations in a partic-
ular age-group (He et al. 2008). The statistical correspondence
between two nodes was determined by computing “The
Pearson” correlation coefficient across all nodes of DVN and
VVN. A symmetrical connectivity matrix was estimated for six
cortical nodes in DVN and six cortical nodes in VVN for each
subject within each age-group. The level of edge significance
for the one-tailed test was set at P = 0.05. For a clear demon-
stration of the CTh-transformation-based connectivity “a graph
representation” was developed for DVN and VVN using
MATLAB (see the Results).

The connectivity results represented in Pearson’s r correla-
tion index (1CSM) are not corrected here by the traditional
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Bonferroni correction. The significance levels based on the
standard Bonferroni formula (0.05:180 = 0.0003) are not attain-
able in our small n. Thus, following Cohen (1992) we use the
original values of r statistics (product–moment correlation coef-
ficient r, df = n−2) as a representation of effect sizes (ES) for the
found correlations (large = 0.50 and higher; medium = 0.30;
small = 0.10, Cohen 1992). Large and medium ES predict that
with a larger n sample the statistically significant P value cor-
rected for multiple comparisons will be attainable with high
probability. In the current study, we accepted for statistical
analysis only those coefficients that displayed medium (0.30)
and large (0.50) ES.

Graphical Representation of Within-Network and
Between-Network Structural Connectivity

To display structural connectivity on the cortical mantle
FsAverage cortical measurements from the Freesurfer algorithm
were used (Fischl et al. 1999). FsAverage Cortical surface measures
along with the cerebellum were plotted using Matlab custom code
and “a graph representation” was developed for DVN and VVN,
whereby the significant edges represented undirected connections
between each single node. The gravity center of nodes was esti-
mated by computing the Euclidean mean of the vertices in each
ROI.

On the graph presented in the Result section below (Fig. 4),
blue nodes represent the DVN, red represent the VVN. The con-
nections between DVN nodes are shown in blue color edges,
connections between VVN nodes in red color edges, and con-
nections between DVN and VVN in green edges. The size of a
circle represents strength of the node, that is, sum of weights
of connections to the node, also known as strength of a node in
graph theory (Rubinov and Sporns 2010). The connection
strength (edge) was represented as thickness of the connecting
line between the nodes: the thinnest line represents correlation
significance at P < 0.05, uncorrected, and the thickest line
represents P < 0.001, both are supported by large ES (rp = 0.50 or
higher; J. Cohen 1992).

Results
Age Effects on Neuropsychological Performance on
Tasks Associated with DVN and VVN

Table 1 compares individual raw scores from C, D, and A’s per-
formance on tasks associated with DVN and VVN. The statistics
revealed a lower speed and performance accuracy in C and D
as compared with A on all tasks associated with VVN. Thus, C
and D, as compared with A, showed significantly more persev-
erative errors in WCST-PE, less correct responses in Stroop-WC
Test and lower fluency of words in FAS-VF. C and D did not per-
form significantly differently on FAS-VF test. When applying
task specific to DVN and relying on visual-spatial-motor per-
ception and organization (e.g., BD subtest of Wechsler Scales),
both C and D performed with a high and similar proficiency,
and with a level of skill and speed comparable to adults.
However, in visual-spatial memory tasks, such as CFT-Copy
and CFT-IR, where the demand for top-down control of inter-
ference in the memory domain is high, C were least proficient
than A, whereas D already performed with competence compa-
rable to A. In conclusion, in children and adolescents the profi-
ciency of performance on tasks associated with specific
functions of DVN appears closer to the adult level of perfor-
mance than on tasks associated with VVN.

Age Effects on Difference Maps of Cortical Thickness

The primary question raised was whether the cortex in dorsal
and ventral visual streams mature at different rates. Following
previous evidence on age-dependent cortical thinning in later
childhood and adolescence (Sowell et al. 2004) and considering
a variable interrelationship between functional and structural
brain development (Goldman-Rakic 1988; Ciesielski et al. 2006;
Seeley et al. 2009), we expected that in our pediatric popula-
tions, C and D, the network that matures early may display a
CTh pattern not significantly different from adults. Figure 2 dis-
plays statistically significant CTh-difference maps for age-
group contrasts: Figure 2A is contrasting CTh in young adults
(A)–children (C), and Figure 2B is contrasting CTh in young

Figure 1. Cortical regions of interest (ROI) representing DVN and VVN in the lateral and medial plane of the brain. The cortical regions used for cortical thickness mea-

surements for the dorsal visual network (DVN): SF (superior frontal cortex), IPP (inferior posterior parietal), PCN (precuneus/medial inferior parietal); ventral visual

cortex (VVN): PFV (ventral prefrontal), FG (fusiform gyrus/inferior temporal), OF (orbital frontal/medial). Identification of ROIs based on Desikan et al. 2006.
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adults (A)–adolescents (D). There are no significant age-group
differences in nodes of DVN with one exception a significantly
thicker cortex in C in the left dorsal SF cortex extending to the
supplementary motor area. In contrast, for VVN most of the
cortical nodes show a significantly thicker cortex in C than in A
and in VPF for D than A, while contrast in CTh in C versus D
(not included here) was not significantly reflected in the maps.

Group-differences in CTh were calculated using post hoc
Tukey–Kramer All Pair Test (after one-way ANOVA, alpha set at
0.05; Fig. 3). The values for DVN showed no statistically signifi-
cant differences between C and D or between C and A
(P between 0.1 and 0.9). There is one exception in DVN pattern,
when CTh in the left SF node is statistically significantly thicker
in C as compared with A (C: 2.71; A: 2.58mm, P = 0.04). The
measurements for CTh in nodes of VVN (Supplementary
Table S1C) display significant differences for C versus A (rang-
ing between P = 0.05 and P = 0.00001), and for D versus A in

bilateral VPF, FG, FO; (P = 0.05–0.0001). FO in the left hemisphere
is the only VVN region in which CTh did not reach statistical
significance for D versus A. The differences in CTh in C versus
D are not significantly different for any of the nodes in VVN,
corroborating the view about the protracted maturation of
these regions. Visual examination of the within age-group dis-
tribution of mean values for CTh in female and male brains did
not show any trend of sex-related differences. The female and
male measurements did not significantly differ within groups
and in relation to regions of the cortex.

Structural Connectivity: a Correlation of Age-Dependent
Cortical Thinning Between-Network Nodes

We asked whether DVN and VVN, defined in prior DTI and DSI
studies on white-matter connectivity, will also demonstrate
high correlation in time-courses of maturational cortical thin-
ning, and therefore display structural intra-network connectiv-
ity. We define “structural network connectivity” as coherent
“cortical thickness transformations between two nodes of a
functional network”. Since developmental neuroimaging stud-
ies showed that function and structure are interconnected, in
that an increased similar functional experience engages trophic
processes in the network which may promote a specific ana-
tomical plasticity (Lerch et al. 2006; He et al. 2017), we further
ask if there is an age-dependent difference in the maturation of
structural connectivity in DVN and VVN. Since DVN is innately
involved with early childhood sensory-motor development,
and has been suggested to be more fundamental to cognitive
development in health and developmental psychopathology
(Braddick et al. 2003; Atkinson and Braddick 2011) one may
hypothesize that DVN will display earlier a more mature pat-
tern of cortical connectivity as compared with VVN.

A “graph representation” of within-network and between-
network structural connectivity is displayed in Figure 4. A
matrix of Pearson correlation coefficients of CTh transforma-
tions between nodes of each network presents the within-
network structural connectivity for DVN (in blue), VVN (in red),
and for between networks DVN and VVN (in green). The

Figure 2. Statistical CTh-difference maps based on FreeSurfer analysis of MRI. (A) is contrasting CTh in young adults (A) with children (C), and (B) is contrasting CTh

in young adults (A) with adolescents (D). The maps are overlaid on the lateral and medial surface of the left-brain hemisphere with average folding patterns of sulci

(dark gray) and gyri (light gray) derived by using the surface-based morphing procedure (Dale et al. 1999; Fischl et al. 1999b). The color scale presents a range of statis-

tically significant changes in – log10(p) · sign(c): we accepted for interpretation the contrast represented by light blue color that corresponds to high statistical signifi-

cance (corrected) of thicker cortex in C: 2 and 5 on the scale correspond, respectively, to P = 0.01 and P = 0.00001; (note the significantly thicker cortex in C for VVN in

FG, PFV, and FO nodes; for DVN in the left SF).

Table 1 Age-dependent performance skills on neuropsychological
tests related to DVN and VVN

Kruskal–
Wallis

Multiple comparisons

Tests χ2 P C vs. D D vs. A C vs. A

DVN
CFT-Copy 18.77 0.001 n.s. n.s. *
CFT-IR 14.49 0.001 n.s. n.s. *
BD 11.35 0.003 n.s. n.s. n.s.

VVN
WCST-PE 16.71 0.001 * * *
FAS-VF 21.56 0.001 n.s. * *
STROOP-WC 18.81 0.001 n.s. * *

Multiple comparisons, using a Bonferroni correction with family-wise error rate of

alpha = 0.05, were used to compare each pair of subjects from all age groups.

*Statistically significant group contrasts. DVN –> Dorsal Visual Network; VVN –>
Ventral Visual Network; C –> children (6 years old), D –> Adolescents (~10–11 years

old), A –> Adults (~21 years old); a Neuropsychological test associated with DVN:
B–D (Block Design Subtest from Wechsler Intelligence Scales), and with VVN: FAS-
VF (FAS-Benton Controlled Verbal Fluency Test).
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structural connectivity between nodes of DVN and VVN are
represented in green edges. The size of a circle represents
strength of the node, that is, sum of weights of connections to
the node. The connection strength is represented in thickness
of the connecting edges between the nodes. The thinnest edge
represents correlation significance at P < 0.05, uncorrected, and
thickest edge represents P < 0.0001. The edges are accompanied
by large ES, 0.50.

The strongest Pearson correlation coefficients for develop-
mental thinning of cortex were found between left–right homol-
ogous regions in both networks, ranging from r = 0.60, P = 0.002
to highest r = 0.87, P = 0.0003 (Table 2). In many cases, these val-
ues are considerably lower, particularly in D, as compared with
correlations for homogenous within-network nodes. In C, green
edges are mostly non-significant (correlations P = 0.075) but in A
they are significant (P = 0.008).

Age-Group Effects on Structural Connectivity for DVN
and VVN

The graph matrix of correlated CTh changes in nodes of the two
examined networks displayed by Figure 4 strongly implied age-
dependent differences in structural connectivity for DVN and
VVN, raising a question about their statistical validity. The mean
values of Pearson’s correlation coefficients for the selected corti-
cal edges of DVN and VVN for subjects in each age-group were
averaged and submitted to one-way ANOVA. For DVN the effect
of age-group was not significant [F = 2.08, df = 2, p = 0.138; means:
rp: C = 0.439(0.27), D = 0.615(0.19), A = 0.583 (0.25)]. The effect of
age-group was significant for VVN (F = 6.23, df = 2, P = 0.004). Post
hoc Tukey–Kramer All Pair Test (alpha set at 0.05) showed statis-
tically significant increase in correlational properties of edges in
D versus C (mean difference: 0.235; PTukey = 0.003), suggesting
that a significant change in structural connectivity within VVN
may be spurting between the age of 6 and 11. No other age-
dependent effects reached statistical significance, although the
connectivity changes in D versus A and A versus C showed a
clear trend to age-group effects, that may lead to a significant
effect in a larger sample (D vs. A: PTukey = 0.157). It is important to
note, that the mean changes in correlations between the nodes
of VVN in C versus VVN in A are not statistically significant. This
needs to be considered in context of statistically significant
increases of the VVN structural connectivity in D. The increase in
D may be transient before the connectivity is reduced in the third
decade of life in adults and functionally strategized.

The most prominent effect of age-dependent changes was
apparent for the between-network, DVN versus VVN structural
connectivity (F = 12.80, df = 2, P = 0.001). Post hoc Tukey–
Kramer All Pair Test (alpha set at 0.05) showed statistically sig-
nificant increase in density of between-network structural con-
nectivity in C versus D (mean difference: 0.231; PTukey = 0.001),
and in C versus A (mean difference: 0.152; PTukey = 0.004).
Figure 5 is illustrating the above statistics with clear differences
in mean values for structural connectivity within-network
(DVN in blue, VVN in red) and between networks (DVN–VVN in
green).

The age-dependent effects in structural connectivity
between nodes of DVN (in blue) were statistically not signifi-
cant. In VVN (in red), the increase in structural connectivity

Figure 3. Age-dependent contrasts in CTh using box-plots and Tukey–Kramer

all pair test. The box-plots demonstrate typical statistical parameters as quar-

tiles, interquartile distance, median, and the real existing values smaller or big-

ger than 1.5 times the interquartile distance (in green); the mean and the

corresponding standard deviation (red); the outliers (black). The Tukey–Kramer

comparison (after one-way ANOVA, P = 0.05) is visualized using circles in red

for the non-significant and circles in blue for the significant values. The center

of each circle is aligned to the mean in the corresponding box-plots. The radius

of the circles reflects the group variance, the larger the circle the bigger the vari-

ance. Tukey–Kramer all pairs comparison results demonstrate statistically sig-

nificant differences in VVN for A versus C; A versus D in FG-L, FG-R, FO-L, FO-R,

VPF-R. The statistically significant differences in the area VPF-L relate to A

versus C, A versus D, and D versus C. In DVN, the node in SF-L is the only region

with significant differences in CTh for C versus A. No significant age-dependent

cortical thinning was found in other nodes of DVN.
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between C and D was statistically significant (P = 0.004).
Although the age-related contrast in structural connectivity
between C and D, and C and A did not reach the statistical sig-
nificance (pt = 0.157 and 0.233, respectively) both were sup-
ported by strong ES. The between-networks structural

Table 2 Structural connectivity between homologous cortical nodes
of DVN and VVN

Networks DVN VVN

Group IPP SF PCN PFV FG FO

Children
Pearson’s r 0.863 0.764 0.766 0.565 0.567 0.471
P 0.0003 0.040 0.004 0.057 0.054 0.122

Adolescents
Pearson’s r 0.831 0.784 0.401 0.568 0.646 0.668
P 0.008 0.002 0.197 0.054 0.023 0.018

Adults
Pearson’s r 0.747 0.868 0.887 0.914 0.781 0.957
P 0.005 0.003 0.038 0.013 0. 003 0.001

P values in bold.

Figure 5. Mean within-network and between-betwork structural connectivity.

The age-dependent effects in structural connectivity between nodes of DVN (in

blue) were statistically not significant. In VVN (in red), the increase in structural

connectivity between C and D was statistically significant (P = 0.004). Although

the age-related contrast in structural connectivity between C and D, and C and

A did not reach the statistical significance (pt = 0.157 and 0.233, respectively)

both were supported by strong effect sizes. The between-networks structural

connectivity (DVN–VVN in green) is an progressively firming property of the

visual neuro-cognitive system reflected in significant statistical contrasts

between C and D (P = 0.001), and C and A (P = 0.004).

Figure 4. Age-dependent changes in structural connectivity within DVN (blue) and VVN (red) on anatomically informed diagram of network-specific cortical nodes.

Between-network statistically significant edges are in green.
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connectivity (DVN–VVN in green) is an progressively firming
property of the visual neuro-cognitive system reflected in sig-
nificant statistical contrasts between C and D (P = 0.001), and C
and A (P = 0.004).

Within-Network Homologous Structural Connectivity:
DVN and VVN

An important characteristic of a network is its within-network
structural modularity. The strong within-network structural
connectivity would certify the network’s cohesion, and the tight-
ening of the CTh correlative connectivity within a network may
become a possible marker of the network maturation, as dis-
cussed in earlier studies (Lerch et al. 2006; Alexander-Bloch et al.
2010). We will discuss the correlative values for CTh measure-
ments within-network for homologous “lateralized regions”, and
relate them to correlative values representing other within-
network and between-network connectivity. One may expect
that the firm structural integrity of DVN be expressed in particu-
larly high correlations within the functionally homologous
nodes of DVN, as linking the structural with functional modular-
ity (He et al. 2008).

To explore the within-network tightness for DVN and VVN, a
set of Pearson correlations was calculated for the homologous
(left–right) regions of the brain (Fig. 4), as particularly sensitive to
reflecting the structural-functional network integrity. The numer-
ical values for edges connecting homologous nodes within DVN
and VVN is shown in Table 2. Values of Pearson correlation coef-
ficient “rp” are all around 0.60, consistent with and higher for
long-range homologous nodes of DVN (SF-L, SF-R, with corre-
sponding “P” values between 0.03 in children to 0.004 in adults,
all with large ES). Both in A (SF-L to SF-R, r = 0.82, P = 0.0003; large
ES) and in C the connectivity displayed between “homologs
areas” was strong (SF-L vs. SF-R, rp = 0.764; P = 0.004; IPP-L vs. IPP-
R, rp = 0.863, P = 0.0003; PCN-L vs. PCN-R, rp = 0.766, P = 0.003). In
D, the number of edges increased within DVN, demonstrating
denser structural connectivity than in C. In D, SF-L is significantly
correlated with SF-R (rp = 0.784, P = 0.002), IPP-L with IPP-R (rp =
0.831, P = 0.008), but the rp for PCN-L to PCN-R did not reach the
significance (P = 0.197). Following Cohen’s principle (1992), all
considered above Pearson correlations coefficients are supported
by large ES. In VVN, the homologous nodes reached high correla-
tive measures: in C “the structural connectivity”, as demonstrated
by statistically significant correlation of CTh transformations in
homologous areas (Table 2), showed P values only approaching
significance in DVN: FG-L versus FG-R (rp = 0.567, P = 0.054); in
PFV-L versus PFV-R (rp = 0.563, P = 0.057); and for FO-L versus
FO-R the edge remains non-significant (rp = 0.471, P = 0.122).

DVN: In C, age-dependent correlative changes in nodes of long-
range networks are strong between SF-L and IPP-R (rp = 0.578, P =
0.049, LES), and between SF-L versus IPP-L (rp = 0.592, P = 0.042), all
supported by large ES (J. Cohen 1992). Connectivity between SF-R
and PCN-R remains significant (rp = 0.580, P = 0.048, large ES), but
between SF-L and PCN-L (P = 0.19) and between SF-L and PCN-R
(P = 0.087) is not. In D, the number of edges increased within DVN,
showing denser structural connectivity than in C. In A, the number
of significant edges is pruned down as compared with D (e.g., SF-R
does not significantly connect to PCN-L, P = 0.113 and approaching
only significance for SF-R and PCN-R, P = 0.059), and the number
of within-network correlations is reduced. However, the connectiv-
ity between nodes that are significantly correlated is stronger than
in C and D (e.g., SF-L to SF-R, r = 0.82, P = 0.0003; SF-R to IPP-L and
SF-L to IPP-R, r = 0.82. P = 0.007, and r = 0.670, P = 0.004). In sum-
mary, in early childhood the structural connectivity within DVN,

as assessed by correlations of maturational cortical thinning,
shows well-formed and strong connections between homologous
nodes, but weaker long-range connections along the SF–IPP and
PFV-FG axis. In contrast, the abundant edges in D, are reduced in
power. Those that remain, are markedly increasing in power, such
as connectivity between SF-R and IPP-L (r = 0.82, P = 0.007, large
ES), and SF-L and IPP-R (r = 0.670, P = 0.004, with large ES).

VVN: In C, we found a strong edge between FO-L and PFV-R
(rp = 0.765, P = 0.004) and FO-R with PFV-R (rp = 0.704, P = 0.011).
CTh transformations in PFV-L versus FG-R (P = 0.318) and PFV-R
versus FG-L, (P = 0.250) were not significantly correlated, sug-
gesting an ongoing maturation. The pattern of connectivity in
the adolescent group (D) deriving from the maturational CTh
changes was considerably different from that in C. An abun-
dance of connections between nodes of the network, but with
relatively less strong edges was found in D (e.g., PFV-L with FG-
L, r = 0.56, P = 0.057). Furthermore, some of the edges displayed
in D, disappear in A (e.g., FO-L vs. FG-L and FO-R vs. FG-R) and
do not display statistically significant connectivity. In contrast,
the edges which become significant for prefrontal ventral cor-
tex, PFV-L with FG-L (rp = 0.539, P = 0.045) and PFV-R versus FG-
L (rp = 572, P = 0.05) become significant. Summarizing, in C the
pattern of VVN connectivity is bare. Some of the long-range
connections are missing. There is no evidence of structural
connectivity between bilateral PFV and the fusiform gyrus cor-
tex (FG-L or FG-R). An unexpected, strong short-range connec-
tivity is displayed between nodes of the frontal orbital cortex
(FO-L and FO-R) and prefrontal ventral (PFV-R) area. In contrast,
early adolescence is marked with unrefined abundant connec-
tivity and multiple edges between nodes of VVN. In A, the pat-
tern of structural connectivity in long-range networks becomes
more selective with reduced number of edges, but increased
strength of connectivity (PFV-L to FG-L; PFV-L to FG-R).

Discussion
The present study raises a three-factorial question about corti-
cal maturation within DVN and VVN: whether the pattern of
age-dependent transformations in CTh, the within-network
structural connectivity and the proficiency in network-related
cognitive functions vary between DVN and VVN, and if yes,
which of the two networks matures first. Three significant find-
ings are reported: (i) age-dependent differences in the pattern
of MRI CTh point to an earlier maturational course of DVN; (ii)
age-dependent differences in the pattern of within-network
connectivity show stronger edges (in particular homologous)
within DVN than within VVN, with a chaotic abundance of con-
nections in adolescents across both networks; (iii) high and
similar to adults cognitive proficiency in children and adoles-
cents on visual-spatial perceptual and working memory tasks
associated with the frontal-parietal dorsal visual processing
network, but significantly lower proficiency on visual semantic
categorization tasks targeting control of impulsive responses
associated with the ventral visual network.

Age-Group Differences in MRI CTh Favor Early
Maturation of DVN

The non-linear developmental pattern of CTh thinning in DVN
and VVN displayed here (see Fig. 3A), is consistent with earlier
cortical morphometry findings presenting a sequence of thin-
ning extending from the primary visual cortex to associative
prefrontal regions (Caviness et al. 1996; Huttenlocher and
Dabholkar 1997; Giedd et al. 1999, 2009; McAlonan et al. 2005;
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Brickman et al. 2006; Shaw et al. 2008; Westlye et al. 2010).
Specifically, the ventral prefrontal and ventral temporal cortex
display significantly protracted transformations between child-
hood and young adulthood, in line with prolonged maturation
in other ventrally located networks that play a critical role in
cognition, such as the frontal-insular network (Uddin et al.
2011). The cortical nodes of VVN display globally an intense
process of thinning and increased connectivity between the
age of 6 and 11, from sparse edges in children through dynamic
non-selective structural “over-connectivity” in adolescents, and
later stabilization in adults. Endocrine data suggest that
dynamic hormonal changes in adolescence may contribute to
over-production of synapses, with enhanced left hemisphere
coupling in males (Fair et al. 2007, 2009; Kolb 2009; Supekar
et al. 2009).

The exact processes that underlie developmental cortical
thinning are not clear, and one possible hypothesis is that the
transformations in CTh and the consequential functional diver-
sity may be sculptured by variable processes of structural fine-
tuning, such as developmental apoptosis, synaptic pruning,
proportional reduction of gray tissue that is paralleled with an
increase in myelination and neurotransmitter/hormonal con-
centration (Goldman-Rakic et al. 2000; Barbas 2015). This leads
to a reduction of density in neuronal cellular bodies which fos-
ter better communication between individual neurocells, and
effectively between networks. In accordance with the principle
that “ontogeny recapitulates phylogeny” the prefrontal and
temporal cortex, are the latest to mature in our data consistent
with reports from other laboratories (Diamond 2002; Bunge and
Wright 2007).

Recent studies report that dendritic spine density in child-
hood exceeds values in adults by two- to three times, and the
dynamic process of elimination begins in late childhood, and
yet the elimination of synapses continues through the third
decade of life when the cortico-cortical circuitry reaches matu-
rity (Petanjek et al. 2011). This functional plasticity reflecting
reorganization of neural circuitry, including synaptic elimina-
tion, is consistent with numerous EEG and fMRI reports sug-
gesting its essential role for acquisition of higher cognitive
functions such as mental flexibility, working memory and
affective control (Casey et al. 2008; Feinberg and Campbell 2010;
Webster et al. 2011). Thus, the prefrontal cortex related to high-
er cognitive functions undergoes protracted remodeling during
adolescence at both functional and anatomical levels that are
concomitant with increases in cortical-sub-cortical connectivity
and functional integrity. Among the processes contributing to
development of the prefrontal cortex excitatory/inhibitory con-
trol, the GABAergic system is of main interest as it undergoes
extensive changes during adolescence at the level of protein
expression and modulation by neurotransmitters (Caballero
and Tseng 2016). Gamma aminobutyric acid (GABA) has been
shown to be one of the earliest neurotransmitters present in
the developing brain. GABA can depolarize cortical progenitor
cells and, thus, may provide the main excitatory drive for the
immature cortical network and play a central role in regulating
cortical development (Letinic et al. 2002). GABA interneurons
regulate many steps of neurogenesis in the brain including
neuronal proliferation, migration, differentiation, formation of
early neural networks and the experience-dependent tuning of
new circuits. Thus, the GABAergic system may be one of the
major contributors to the developmental thinning of the cortex
that we report here.

Our current findings are generally in line with the matura-
tional rules that have been reported for white-matter

pathways, however, although a strong functional correlation
has been reported between regions that are densely structur-
ally interconnected, such as the cortical dorsal fronto-parietal
network (Wright et al. 1999; Lerch et al. 2006), studies on struc-
tural changes in white matter suggest that it is the sharing
functional engagement that dictates structural maturational
coupling and may drive structural covariance. Loenneker et al.
(2011) reported on differential courses of white-matter path-
ways for DVN and VVN. They found that corpus callosum fiber
bundles feeding to ventral networks increased in volume by a
factor of 2–3 between childhood (~6 years) and young adult-
hood (~27 years), while the factor for white matter changes in
the dorsal network increased only 1.5–2 times. Thus, age-
dependent increases in fractional anisotropy and decreases in
radial diffusivity were found in both DVN and VVN, but the
authors interpret changes in DVN white-matter pathways as
prolonged. However, although the volume of the VVN pathway
appears to reach an adult-like volume of fibers at the age of 7,
the authors point out that in children bundles of fibers are sent
into lingual visual areas that may have prolonged pruning till
adulthood in line with experience-related plasticity. Similarly,
the fibers running into the fusiform and parahippocampal gyri
are not yet established in children, which is consistent with our
data showing late maturation of the cortex in nodes of VVN. A
comprehensive review of studies on development of visual net-
works suggested an earlier maturation of the cortical volume in
DVN in contrast to an earlier maturation of the white-matter
pathways volume in VVN (Klaver et al. 2011).

Our findings are consistent with studies across-species
employing diverse techniques (Distler et al. 1996). For example,
the development of dorsal and ventral visual pathways was
investigated using a local cerebral glucose utilization (LCGU)
technique in rhesus monkeys (Macaca mulata) age 2–9 days,
1–6 month, and 3–4 years. Visual stimulation consisted of a
high-contrast black–white geometrical pattern rotating 30°
counterclockwise around the animal (Bachevalier et al. 1991).
Optical densities related to regions of the autoradiographs were
measured with a photoscan P-100 densitometer on a computer-
based image processing system. Measures of autoradiographs
were obtained at 1mm intervals. The comparison of LCGU
results in dorsal and ventral visual pathways suggested that in
rhesus monkeys the dorsal visual processing stream develops
earlier than ventral.

Age-Group Differences in Within-Network Connectivity:
Strong Edges for DVN Homologous Nodes

Current CTh findings favor a view of earlier cortical maturation
of the DVN module that is consistent with multimodality stud-
ies pointing to earlier functional and structural development of
DVN (Kovács et al. 1999; Atkinson 2000; Kovács 2000; Atkinson
and Braddick 2003; Johnson and Munakata 2005; Ciesielski et al.
2006; Alexander-Bloch et al. 2010). One might expect, therefore,
that DVN will also reveal high inter-regional correlations
between the homologous left and right hemisphere nodes.
Such a pattern will be consistent with a direct link between the
structural and functional individual modularity of the network,
as suggested by prior studies (He et al. 2008). The present study
finds significant homologous edges for both networks with sta-
tistically stronger edges for DVN than VVN. Thus, an initial
formation of homologous connectivity across the corpus callo-
sum may be a general principle of the brain networks forma-
tion. In our data, the lead in functional development of this
connectivity is assumed by DVN. This is consistent with
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developmental studies on cortical morphometry and neurobe-
havior (O’Donnell et al. 2005; Chen et al. 2008) and functional
neuroimaging (Adleman et al. 2002).

Complementary to structural maturational changes in white-
matter connectivity are fMRI reports of positive correlations
between increasing RS functional connectivity (Greicius et al.
2003; Sporns, Tononi and Kötter 2005) and long-range connectiv-
ity maturing later (Lebel et al. 2008). RS-fMRI studies in older
children report a similar general pattern of nodes and connectiv-
ity as in adults. However, cortical nodes associated with higher-
order cognitive networks such as DVN and VVN, may not be
integrated yet into a cohesive system (Damoiseaux et al. 2006;
Damoiseaux and Greicius 2009). Our current CTh data is consis-
tent with the latter as the thinning in the SF node is, in contrast
to the posterior parietal, prolonged till adolescence in DVN,
although generally DVN develops earlier than VVN.

Lerch et al. (2006) reported that the thickness of the cortex
in areas subserving related functional specialization increases
in structural similarity to each other with age. The present
study shows that the frontal-parietal connectivity of DVN is
lower in children than in adults, and yet children are quite pro-
ficient in tasks demanding visual-spatial skills. A possible
explanation is that the broad sub-cortical contribution of the
cerebellum and caudate nuclei through the parietal and premo-
tor cortices (Yeterian and Pandya 1995; Clower et al. 2005) may
compensate for the immature frontal-parietal connectivity and
thus, secure performance on complex tasks. The functional
and structural networks variability becomes more evident in
pathophysiological studies (Atkinson 2000; Ciesielski et al.
2006, 2004) and by deductive mathematics (Friston and Price
2011).

The quantitative changes in the age-dependent matrix of
edge density that we observed in the current study are consis-
tent with the report by Khundrakpam et al. (2012). These
authors show an increase in the number of connector hubs
from low in early childhood (age 4.8–8.4 years), to an extensive
distribution of hubs in late childhood/early adolescence (age
8.5–14.7), and again reduction of hubs in late adolescence (till 18
years of age). Data from our study and from other laboratories
also show qualitative similarities in distribution of connectivity
nodes, marked by an age-dependent shift from short-range FO
(anterior cingulate in the Khundrakpam et al. study) to long-
range connectivity between associative areas of the prefrontal
ventral to posterior-inferior parietal cortex and precuneus. The
unexpected finding of adolescent “over-connectivity” in both
DVN and VVN awaits a large study investigation. Our data show-
ing high-density chaotic connectivity in adolescents and poorly
developed frontal-parietal axis in children are consistent with
low efficiency of the top-down inhibitory control system, often
discussed in adolescent literature as responsible for erratic
behavior and the search for sensations (Davidson et al. 2006;
Shaw et al. 2008; Cohen et al. 2010; Raznahan et al. 2010; Van
Leijenhorst et al. 2010).

Compelling supportive evidence for earlier maturation of
DVN came from our recent MEG studies on developmental con-
nectivity among nodes of DVN and VVN as reflected in RS-MEG
alpha oscillatory synchronization (Ciesielski et al. 2014). We
acquired resting state functional connectivity (fcMEG) measures
from 12 healthy male participants age 6–12 and 12 adults age
19–28 during a 6min fixation on a hair-lined cross. The phase
lag index (PLI) was then calculated (Stam and Reijneveld 2007).
PLI is a reliable estimate of phase alpha synchronization, as a
measure of connectivity between ROIs of DVN and VVN. PLI is
also a measure of asymmetry of distribution of phase

differences between two time-coupled oscillating ROIs. 16 ROIs
specific to DVN and 16 ROIs specific to VVN were parceled and
transformed into an MNI atlas for group analysis (Van Dijk et al.
2010). Increased PLIs of fcMEG alpha synchronization indicate a
significantly stronger functional connectivity between coupled
oscillators in the DVN as compared with VVN, in children. The
PLI values for DVN present a similar pattern of connectivity in
children and adults. In VVN the PLIs are significantly lower in
children than in adults suggesting an incomplete development
of network connectivity. Summarizing, our findings on matura-
tional cortical thinning and correlation of these cortical changes
suggest an earlier maturational course for DVN. A question of
major importance remains whether cortical DVN leadership is
reflected in cognitive and behavioral proficiency.

Developmental Pattern of Cognitive Performance
associated with DVN and VVN

Thinning of the cortex as a maturational process has been
reported to parallel increases in functional diversity and profi-
ciency. For instance, responsiveness develops earlier within the
primary sensory cortex that displays cortical thinning first. The
associative frontal regions of the cortex, linked to tasks with
complex mental flexibility, remain in the active process of thin-
ning until young adulthood (Sowell et al. 2001; Gogtay et al.
2004; Toga et al. 2006; Giedd et al. 2008). Our neuropsychologi-
cal measures provide a corresponding illustration: children are
slower and less accurate than adults on almost all tests, includ-
ing visually mediated working memory such as ROCFT-Recall
and Wisconsin Card Sorting Test-PE, with two exceptions –

they performed on a comparable level during copying of the
complex ROCFT figure and on Blocks Design. Adolescents, how-
ever, who are closer to adults in thickness of the cortical man-
tle, demonstrate more comparable abilities to adults in
performance on tests challenging visual-spatial cognitive abili-
ties and working memory, such as the Wisconsin Card Sorting
Test-PE and ROCFT- Recall. Furthermore, in Verbal Fluency and
Stroop Word-Color Interference tests, relying on the late-
maturing ventral prefrontal and temporal regions (PFV, FG)
both children and adolescents continue to be significantly
underperforming relative to adults.

The relationship between functional brain connectivity and
cognitive proficiency was examined in prior studies using RS
and task-related fMRI connectivity paradigms. The findings sug-
gested higher cognitive proficiency with stronger functional con-
nectivity, as reported for the dorsal frontal-parietal network and
visual-spatial functions (Gilbert and Wu, 2013). More recent
studies tracking RS functional brain connectivity with source-
based MEG neuronal oscillations showed a positive covariance
between increased integrity of the frontal-parietal network and
children’s proficiency in visual-spatial working memory tasks
(Barnes et al. 2016). It is also the case in our study, where a sta-
tistically significantly stronger structural connectivity in DVN as
compared with VVN in children is associated with better perfor-
mance on tasks of visual-spatial perception and memory, func-
tions specific to DVN. Our current CTh data are consistent with
our earlier RS-MEG study (Ciesielski et al. 2014) and studies from
other Laboratories (Boersma et al. 2011) showing stronger struc-
tural connectivity between nodes of DVN than VVN, with corre-
sponding higher proficiency on visual-spatial tasks. One must,
however, recognize that the DVN–VVN dichotomy could only be
a matter of degree as both pathways may share certain neuroan-
atomic connectivity and neurotransmitter activation (Oscar-
Berman et al. 1991; Zachariou et al. 2015). Illustrative here are
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studies on recognition of faces, frequently considered to be a
strong marker of inferior occipital/temporal activation within VVN.
Recent fMRI and TMS studies on processing of faces clearly dem-
onstrate activation of the inferior temporal/occipital gyrus of VVN,
but also activation of parietal/occipital and the right dorsal frontal
cortex, components of the visual-spatial DVN (Zhen et al. 2013;
Zachariou et al. 2016).

As presented above, the developmental CTh properties of
the DVN module reflect tight structural cohesiveness within
each age group, although the bilateral prefrontal (SF) cortex in
children has not yet reached maturation. One consequence of
this prefrontal immaturity is a delay in formation of inter-
regional connectivity along the long-range prefrontal-parietal
axis (see Fig. 4 and section below), crucial for attentional exper-
tise (Corbetta and Shulman 2002; Bressler et al. 2008; Gregoriou
et al. 2009). Our data suggest, therefore, that neither, DVN or
VVN, have reached complete maturity in children or adoles-
cents, and yet both pediatric groups demonstrate a consider-
able expertise in tasks governed by these networks in adults.
We suggest that the involvement of other age-specific sub-cor-
tical compensatory circuits, cerebellum and caudate nuclei that
have a robust functional connectivity with the inferior parietal
cortex, may need to be considered (Ciesielski et al. 2006).
Findings from recent studies in children on increase of GABA
concentration with age and reduction in concentration of gluta-
mate, the excitatory neurotransmitter in the striatum (Ghisleni
et al. 2015) is consistent with such a hypothesis. Alternatively,
the concept of signatures of network maturation may need to
be reconsidered.

The principles that determine interrelationship between
changes in CTh and connectivity within the long-range net-
works, such as DVN and VVN, and behavior have been a focus
of neuroimaging studies. There are still many unanswered
questions. In her recent cortical structural model for brain con-
nectivity Barbas (2015) suggests that systematic structural vari-
ation across cortical areas could be considered as a core
organizing principle for variability of connections and func-
tions. This model emphasizes differences in the timing of
development of different cortical areas as a likely mechanism
for the emergence of systematic cortical structural variation
that leads to a broad diversity of multiple pathway connections
and neural computations, to differential recruitment of areas
for flexible behavior, to variable behavioral dysfunctions and
psychiatric disorders (Herbert et al. 2004). Systematic differ-
ences in the number of cortical layers, in neuronal spine den-
sity and dendritic complexity across brain areas have been
reported by molecular studies (Allman and McGuinness 1988;
Dombrowski et al. 2001; Elston et al. 2009; Lebel et al. 2008;
Kaas 2008, Collins et al. 2010). The central principle is that the
changes in laminar structure are not random but systematic
and determined by a specific developmental time principle, yet,
early prenatal and perinatal influences may lead to highly pre-
dictable variance (Walhovd et al. 2016). Our results provide sup-
port for this model, suggesting that CTh and structural brain
connectivity rely on the systematic structural variation of the
cortical mantle that is both genetically-determined and
experience-dependent (Rakic, et al. 1996; Rakic 2009).

Methodological Considerations

The size of our sample is relatively small, but since the age dis-
tribution within each age-group is narrow (~1 year), the number
of participants from our study is comparable to large develop-
mental studies where testing sizable samples of participants

permits only a small size n representing a particular age win-
dow. The internal validity of our data is, therefore, high but
limited to the narrow age window that we tested. The high
validity of data was also secured by rigorous selection of partic-
ipating typically developing children using clinical interviews
and neuropsychological assessment of each participant by the
same clinician. The high control of the participant’s motion
during acquisition of two high resolution sets of MRI images
was achieved by training each child in a relaxation session
prior to scanning. Moreover, since the youngest children-
participants were age 6 and older, the age-related gray/white
brain tissue contrasts did not influence brain tissue segmenta-
tion or registration of brain coordinates during the FreeSurfer
measurements of CTh that deserve to be considered as valid
and reliable. The converging findings, CTh morphometry, intra-
network connectivity, and neuropsychological performance
contribute to the validity of our conclusion on the earlier matu-
ration of the DVN. Thus, small-sample studies, with high inter-
nal integrity, may provide good validity data. Saying this, the
current findings need to be submitted to scrutiny of replication
on larger n samples across broader age groups before the early
development of DVN could be considered as a predictive devel-
opmental marker and guidance for preventive efforts.

Concluding Remarks
The study reports three sets of converging evidence supportive
of the earlier maturation of DVN as compared with VVN: (i) MRI
CTh showed earlier developmental thinning of the cortical man-
tle in nodes of DVN than VVN; (ii) Connectivity between nodes
within DVN in children was not significantly different from that
in adults (except for dorsal SF), with edges between the homolo-
gous nodes stronger in DVN than VVN; (iii) Cognitive perfor-
mance on tests associated with DVN (visual-spatial perception
and memory) was comparable across age groups, in contrast to
significant age-group differences on tasks associated with VVN.
An important characteristic of the present connectivity data in
both networks is the inverted U pattern of age-dependent con-
nectivity, reflecting a low number of edges in children, sharp
rise in early adolescence and reduction of edges in adults. This
observation urges more detailed studies on quantitative and
qualitative changes in adolescent brain connectivity, that may
elucidate the neurobiology of unique sensitivity, increased acti-
vation of cortical-striatal networks and frequency of impulsive
and scantily controlled behavior in early adolescence
(Somerville and Casey 2010). Thus, current MRI cortical mor-
phometry findings suggest that DVN may be leading the trajec-
tory of visual networks development in healthy children,
although, the functional and structural development of DVN nei-
ther in children nor early adolescents achieved the level of
maturity comparable to young adults. Indeed, young 21 years
old adults may not represent the “maturity plateau” in visual
networks development, since white-matter pathways, cortical
connectivity and cognitive control may undergo age-dependent
improvement till almost the age of 30 (Tamnes et al. 2010;
Petanjek et al. 2011; Amlien et al. 2016). It was shown that during
an emotionally challenging task the brain of 21-year-olds shows
activity resembling adolescents more than adults (Cohen et al.
2010). The present data demonstrate a dynamic window of
changes in functional DVN connectivity between childhood and
adolescence, thus, providing support to the needs for early inter-
vention and enrichment of translational programs at this critical
time of brain plasticity.
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