Early Pain Exposure and Region Specific Brain Cortical Thickness Interact to Predict Executive Function at 8 yrs in Children Born Very Preterm

M. Bichin1, C.M.Y. Chau1, M. Ranger1,2, S.P. Miller1,2, A. Garg3, M.F. Beg1, K. Fitzpatrick1, B. Bjornsson1,2, A.R. Synnes1,2, A. Diamond1,2, R.E. Grunau1,2
1Child and Family Research Institute Vancouver; Pediatrics, University of British Columbia; 2Engineering Science, Simon Fraser University; 3Paediatrics, University of Toronto and Hospital for Sick Children

OBJECTIVE

To evaluate whether neonatal pain-related stress and cortical thickness together predict performance in executive functions at school-age in children born very preterm

METHODS

• N=46 children born very preterm 25-32 gestational age (GA) followed longitudinally from birth underwent MRI imaging on a Siemens 1.5 Tesla Avanto system at median age 7.8 years
• Children with severe brain injury and/or major motor/sensory/cognitive impairment were excluded
• Chart review from birth to term was carried out by a neonatal research nurse (e.g. invasive procedures [pain-related stress], early infection, morphine exposure)

RESULTS

After adjusting for neonatal clinical factors (GA, SNAP-II day 1, infection, number of surgeries, cumulative morphine exposure) and WISC IV Verbal Comprehension Composite score (Verbal IQ):

• In 8/21 brain regions, the interaction between neonatal pain/stress and cortical thickness predicted Flanker % correct (p < .001 to p = .003)
• The relationship is shown for the left lingual cortex, and was the same for:
 - left & right rostral middle frontal, right inferior temporal, left caudal middle frontal, left superior parietal, right superior frontal, right superior temporal (after adjustment for multiple comparisons)

CONCLUSIONS

• Our findings suggest that executive function performance in very preterm children is dependent on both neonatal pain/stress exposure and cortical thickness
• The relationship these factors have to executive function performance cannot be understood by examining them individually

REFERENCES

FUNDING

Eunice Kennedy Shriver Institute of Child Health and Human Development (NICHD/NIH) grant R01 HD039783 [REG]. Canadian Institutes for Health Research (CIHR) grants MOP146904 [REG] and MOP139952 [SPN], Senior Scientific award; Child & Family Research Institute [REG]. Bloorview Children’s Hospital in Paediatric Neuroscience [SPN]. Post-doctoral Fellowship CIHR [MB] Paediatric Health Research [MB] Eunice Kennedy Shriver Institute of Child Health and Human Development [MB]. Four Year Doctoral Fellowship, University of British Columbia [MB]. Faculty of Medicine Graduate Award [MB]

INTRODUCTION

• In infants born very preterm, neonatal procedural pain-related stress during a period of very rapid brain development, is associated with:
 - Cortical thickness differs (thinner or thicker) in children to young adults born very preterm compared to full-term1,2,3
 - Among preterms, neonatal pain-related stress is associated with altered cortical thickness in 21/66 specific brain regions4,5
 - EF performance is related to cortical thickness in preterm and full-term children4
 - Relationships between neonatal pain-related stress, cortical thickness and EFs in children born very preterm have not been examined

DESCRIPTIVE STATISTICS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N = 46 (18 boys, 28 girls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal characteristics</td>
<td></td>
</tr>
<tr>
<td>GA at birth (wks)</td>
<td>29.4 (27.21-31.46)</td>
</tr>
<tr>
<td>Birth Weight (g)</td>
<td>1202 (892-1509)</td>
</tr>
<tr>
<td>Severity of illness day 1 (SNAP-II)</td>
<td>9.0 (0.0-17.5)</td>
</tr>
<tr>
<td>Skin-breaking procedures (number)</td>
<td>76 (44-137)</td>
</tr>
<tr>
<td>Culture proven infection (number, %)</td>
<td>12 (26)</td>
</tr>
<tr>
<td>Surgery ≥ 1 (number, %)</td>
<td>8 (17)</td>
</tr>
<tr>
<td>Morphine (cumulative daily µg adjusted for weight)</td>
<td>43 (0-771)</td>
</tr>
<tr>
<td>Flanker task (% correct)</td>
<td>94 (88-94)</td>
</tr>
<tr>
<td>WISC IV Verbal Comprehension Composite score</td>
<td>98 (93-105)</td>
</tr>
</tbody>
</table>

School-Age characteristics at scan

- Chronological Age (yrs): 7.78 (7.69-8.03)
- Weight (kg): 23.2 (21.2-26.7)
- Height (cm): 123.9 (120.8-126.5)
- Head circumference (cm): 51.5 (50.0-53.0)

DESCRIPTIVE STATISTICS

• Data Analysis: Generalized linear modeling; multiple comparisons

CONCLUSIONS

In very preterm children with no severe neonatal brain injury and/or major sensory/motor/developmental impairments, after adjusting for clinical confounders and Verbal IQ:

• Combination of fewer skin breaking procedures and thinner cortex predicted better Flanker % correct

In children with thicker cortex, exposure to more skin breaking procedures predicted poorer Flanker % correct

• Same relationship was found in eight brain regions related to EFs

RESULTS

In infants born very preterm, neonatal procedural pain-related stress and cortical thickness interact to predict performance in executive functions during a period of very rapid brain development, is associated with:

• Cortical thickness differs (thinner or thicker) in children to young adults born very preterm compared to full-term1,2,3
• Among preterms, neonatal pain-related stress is associated with altered cortical thickness in 21/66 specific brain regions4,5
• EF performance is related to cortical thickness in preterm and full-term children4
• Relationships between neonatal pain-related stress, cortical thickness and EFs in children born very preterm have not been examined

DESCRIPTIVE STATISTICS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N = 46 (18 boys, 28 girls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal characteristics</td>
<td></td>
</tr>
<tr>
<td>GA at birth (wks)</td>
<td>29.4 (27.21-31.46)</td>
</tr>
<tr>
<td>Birth Weight (g)</td>
<td>1202 (892-1509)</td>
</tr>
<tr>
<td>Severity of illness day 1 (SNAP-II)</td>
<td>9.0 (0.0-17.5)</td>
</tr>
<tr>
<td>Skin-breaking procedures (number)</td>
<td>76 (44-137)</td>
</tr>
<tr>
<td>Culture proven infection (number, %)</td>
<td>12 (26)</td>
</tr>
<tr>
<td>Surgery ≥ 1 (number, %)</td>
<td>8 (17)</td>
</tr>
<tr>
<td>Morphine (cumulative daily µg adjusted for weight)</td>
<td>43 (0-771)</td>
</tr>
<tr>
<td>Flanker task (% correct)</td>
<td>94 (88-94)</td>
</tr>
<tr>
<td>WISC IV Verbal Comprehension Composite score</td>
<td>98 (93-105)</td>
</tr>
</tbody>
</table>

School-Age characteristics at scan

- Chronological Age (yrs): 7.78 (7.69-8.03)
- Weight (kg): 23.2 (21.2-26.7)
- Height (cm): 123.9 (120.8-126.5)
- Head circumference (cm): 51.5 (50.0-53.0)

DESCRIPTIVE STATISTICS

• Data Analysis: Generalized linear modeling; multiple comparisons

CONCLUSIONS

In very preterm children with no severe neonatal brain injury and/or major sensory/motor/developmental impairments, after adjusting for clinical confounders and Verbal IQ:

• Combination of fewer skin breaking procedures and thinner cortex predicted better Flanker % correct

In children with thicker cortex, exposure to more skin breaking procedures predicted poorer Flanker % correct

• Same relationship was found in eight brain regions related to EFs

RESULTS

After adjusting for neonatal clinical factors (GA, SNAP-II day 1, infection, number of surgeries, cumulative morphine exposure) and WISC IV Verbal Comprehension Composite score (Verbal IQ):

• In 8/21 brain regions, the interaction between neonatal pain/stress and cortical thickness predicted Flanker % correct (p < .001 to p = .003)
• The relationship is shown for the left lingual cortex, and was the same for:
 - left & right rostral middle frontal, right inferior temporal, left caudal middle frontal, left superior parietal, right superior frontal, right superior temporal (after adjustment for multiple comparisons)