Gender Differences in the Cognitive Functions Sensitive to the Level of Dopamine in Prefrontal Cortex.

Jeanette Evans *, Dr. John Fossella **, Dr. Elizabeth Hampson *** & Dr. Adele Diamond *

* University of British Columbia, ** Mount Sinai School of Medicine, *** University of Western Ontario

PURPOSE
- We obtained evidence that a gender difference might exist with respect to how a single nucleotide polymorphism (SNP) in the catechol-o-methyltransferase (COMT) gene affects executive function performance. While one version of the gene might be more beneficial for males, the other version may be more beneficial for females. The current research attempted to A) replicate the gender by genotype interaction found by Diamond and colleagues, and B) further investigate why such a gender difference might exist, or examine how differences in estrone levels between males and females might be involved in mediating the interaction.

BACKGROUND
- Some executive functions have been shown to be sensitive to the level of dopamine (DA) in prefrontal cortex (PFC) [1-5]. Indeed, reducing DA in PFC impairs performance on many EF measures (which depend upon PFC).
- An inverted U-shaped curve represents the relationship between the level of DA in PFC and performance of EF [6,7,8].
- PFC critically depends on 2° mechanisms for the clearance of extracellular DA, such as the activity of catechol-o-methyltransferase (COMT) [9] due to a relative dearth of dopamine transporters (DAT; the 1° mechanism for removal of extracellular DA in other brain regions). Variations in the enzymatic activity of COMT (due to variations in the gene) codes for the COMT should therefore be expected to importantly impact PFC functions sensitive to the level of DA in PFC. Past research has shown that being homozygous the Methionine (Met) version of COMT, which results in a more sluggish COMT enzyme, results in better EF performance than being homozygous for the Valine (Val) [10].
- However, this result was not found by Diamond and colleagues with older females. [11]

HYPOTHESIS
- The role of estradiol: Estradiol has been shown to down-regulate the expression of the COMT gene [12,13]. COMT activity is ~10% lower in females than in males (independent of COMT genotype). [14]
- We hypothesized that gender differences in the relative benefit of the Met and Val COMT genotypes should be greater in young adults (with circulating estrogen in women) than in older adults, and that the gender difference should be greatest at times during the menstrual cycle when estradiol levels are high.

METHODS
- Participates: 30 participants between the ages of 19-35.
 - Homozygous for either Met or Val (genotype assessed using PCR, following collection of saliva during a pre-screening session (130 participants).
 - Each gender-genotype group was further divided so half of the women were tested when their estradiol levels were high and half when their estradiol levels were low (different phases of the menstrual cycle).
 - Groups were matched for ethnicity, age, IQ and levels of personal and paternal education. The required information was collected during the pre-screening session, including administration of the Kaufman Brief Intelligence Test II.

INCLUSION CRITERIA:
- Fluent in English
- No hearing/visual impairments (unless corrected)
- No recent neurological impairments, learning disorders, diagnosis of psychological syndromes, or history of brain injury
- Caucasian ethnicity (due to the scarcity of the Met allele in certain populations) [15,16]

TESTING SESSION
- 2 tasks of cognitive function (presented here):
 - Salivary sample for progesterone assay (a relative indicator of estradiol levels).

RESULTS

CONCLUSIONS
- Females homozygous for Val performed better on the Hearts + Flowers task (an EF task dependent upon DA in PFC) than females homozygous for Met when estradiol levels were high.
- The results provide further support for the possibility of a gender difference in the effect of COMT genotype on EF performance.
- Estradiol likely plays a role in establishing the benefit of having the Val version of COMT in females, as the advantage of being homozygous for Met over being homozygous for Met was not as great during the phase of the menstrual cycle when estradiol levels are low.

IMPLICATIONS
- Many of the neuropsychiatric disorders implicating DA in PFC demonstrate gender differences in their manifestation, including prevalence, time course, treatment responses, etc. [17,18,19].
- The results of the current study may: A: provide a framework for studying some of the gender differences in the manifestation of these disorders.
 B: have implications for how medications that affect DA neurotransmission in PFC are prescribed (many of which are currently prescribed on the basis of clinical trials conducted exclusively using males). [20]

LIMITATIONS & REMEDIATIONS
1) Limitation: Small sample size.
 Remediation: The current results are part of a larger ongoing study for which more participants are being recruited.
2) Limitation: Estradiol levels were not measured directly.
 Remediation: As part of the larger ongoing study, salivary estradiol levels will be assessed.
3) Limitation: The effect of high and low estradiol levels was assessed on a between-subjects basis.
 Remediation: As part of the larger ongoing study, each participant is being tested twice on comparative A- and B- versions of each cognitive task.
 Each female is tested once when estradiol levels are low and once when estradiol levels are high (with females counterbalanced for order of menstrual cycle phase).
4) Limitation: Even mild stress has been shown to increase the level of DA in PFC.
 Remediation: The level of salivary cortisol at the time of testing is being measured in the overall study in order to control for stress levels at the time of testing.

REFERENCES
1) Cai & Arnsten, 1997;
2) Scaile et al., paper in prep.
3) Collins et al., 1998;
4) Woodward et al., 2007).
5) Woodward et al., 2007).
6) Gierski et al., 2007;
7) Tucha et al., 1999.
8) de Frias et al., 2004;
9) Malhotra et al., 2002;
10) Jiang et al., 2003
11) de Frias et al., 2004;
12) Malhotra et al., 2002;
13) de Frias et al., 2004;
14) de Frias et al., 2004;
15) de Frias et al., 2004;
16) de Frias et al., 2004;
17) Palmatier et al., 1999;
18) Tsai et al., 2003.
19) de Frias et al., 2004;
20) Woodward et al., 2007).
21) Gierski et al., 2007;
22) Auriacombe et al., 1993.
24) Tucha et al., 1999.
25) Gierski et al., 2007;
26) Woodward et al., 2007).
27) Gierski et al., 2007;
28) Woodward et al., 2007).
29) Gierski et al., 2007;
30) Gierski et al., 2007;
31) Gierski et al., 2007;